针对既有单一形式连接的装配式桥墩难以同时满足中高烈度区轨道快线桥墩对抗弯刚度和多级抗震需求的问题,京雄快线提出了采用无粘结预应力筋、灌浆套筒、混凝土剪力榫及浅承插混合连接的装配式桥墩结构方案。基于室内装配式桥墩足尺模型拟静力试验,建立并验证了精细化数值模型,对比分析了单一连接与混合连接桥墩抗震性能的差异,系统研究了预应力水平、预应力筋位置、灌浆套筒长度及墩底承插深度4个连接参数对桥墩抗震性能的影响规律。结果表明:混合连接装配式桥墩在水平荷载作用下呈典型弯曲破坏,连接性能可靠,抗震性能良好。提升预应力水平可提高桥墩水平承载力,但会降低桥墩变形能力,增大残余位移,预应力水平由30%增加至70%时,承载力提高10.16%。改变预应力筋位置对桥墩抗震性能基本无影响,增大灌浆套筒长度可显著降低桥墩塑性铰长度。墩底承插深度由0.06D增加0.18D至时,可提高承台对桥墩的侧向约束作用,滞回耗能增加15.87%。为保证混合连接装配式桥墩同时具有良好的自复位和耗能能力,预应力水平不宜大于50%且墩底浅承插深度不宜超过0.12D。
Abstract
In response to the challenge of simultaneously meeting the requirements for bending stiffness and multi-level seismic resistance of prefabricated bridge piers with single-form connections, the prefabricated bridge pier with hybrid connections was proposed for the first time in the Beijing-Xiong’an transit express line. The connection was comprised of unbonded prestressed tendons, grouted sleeves, concrete shear keys and shallow sockets. A refined numerical model was established and validated through the indoor quasi-static test of a full-scale prefabricated bridge pier model. The difference of seismic performance between single connected pier and hybrid connected pier is compared. The effects of four connection parameters on the seismic performance of bridge pier were systematically investigated, including prestressed level, the position of prestressed tendon, grouted sleeve length, and socket depth. The results show that, the prefabricated bridge pier with hybrid connections was a typical flexural failure mode under horizontal loading, indicating reliable connection performance and good seismic performance. Increasing prestressed level enhances the horizontal load-bearing capacity of bridge piers but reduces deformation capability, leading to increased residual displacement. When prestressed levels increase from 30% to 70%, the load capacity increases by 10.16%. Changing the position of prestressed tendon minimally affects the seismic performance of bridge piers. Increasing grouted sleeve length significantly decreases the plastic hinge length of piers. Increasing the socket depth from 0.06D to 0.18D enhances the lateral restraint effect of the pier cap, increasing hysteresis energy dissipation by 15.87%. To ensure the prefabricated bridge pier with hybrid connections have good re-centering and energy dissipation, prestressed level should not exceed 50%, and the socket depth of the pier base plug should not exceed 0.12D.
关键词
混合连接预制装配式桥墩 /
抗震性能 /
预应力水平 /
预应力筋位置 /
灌浆套筒长度 /
墩底承插深度
{{custom_keyword}} /
Key words
prefabricated bridge pier with hybrid connections /
seismic performance /
prestressed level /
position of prestressed tendon /
grouted sleeve length /
socket depth
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] YEE A A, ENG H D. Structural and economic benefits of precast/prestressed concrete construction[J]. PCI Journal, 2001, 46(4): 34-42.
[2] HABER Z B, SAIIDI M S, SANDERS D H. Seismic performance of precast columns with mechanically spliced column-footing connections[J]. ACI Structural Journal, 2014, 111(3): 639- 650.
[3] AMELI M J, PANTELIDES C P. Seismic analysis of precast concrete bridge columns connected with grouted splice sleeve connectors[J]. Journal of Structural Engineering, 2017, 143(2): 04016176.
[4] 魏红一,肖纬,王志强,等. 采用套筒连接的预制桥墩抗震性能试验研究[J]. 同济大学学报(自然科学版),2016, 44(7):1010-1016.
WEI Hong-yi, XIAO Wei, WANG Zhi-qiang, et al. Experimental study on seismic performance of precast bridge pier with grouted splice sleeve[J]. Journal of Tongji University (Natural Science), 2016, 44 (7): 1010-1016.
[5] 王志强,卫张震,魏红一,等. 预制拼装联接件形式对桥墩抗震性能的影响[J]. 中国公路学报,2017,30(5):74-80.
WANG Zhi-qiang, WEI Zhang-zhen, WEI Hong-yi, et al. Influences of precast segmental connector forms on seismic performance of bridge pier[J]. China Journal of Highway and Transport, 2017, 30(5): 74-80.
[6] 徐文靖,马骉,黄虹,等. 套筒连接的预制拼装桥墩抗震性能研究[J]. 工程力学,2020,37(10):93-104.
XU Wen-jing, MA Biao, HUANG Hong, et al. The seismic performance of precast bridge piers with grouted sleeves[J]. Engineering Mechanics, 2020, 37(10): 93-104.
[7] MANDER J B, CHRNG C T, Seismic resistance of bridge piers based on damage avoidance design[R], New York: National Centre for Earthquake Engineering Research, State University of New York at Buffalo, NCEER-97-0014, 1997.
[8] 江辉,李辰,冯梦瑶,等.基于核密度估计的干接缝装配式桥墩概率性地震损伤特性分析[J]. 东南大学学报(自然科学版),2021,51(4):566-574.
JIANG Hui, LI Chen, FENG Meng-yao, et al. Analysis on probabilistic seismic damage characteristics of dry joint prefabricated bridge pier based on kernel density estimation[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(4): 566-574.
[9] 高婧,葛继平,林铁良. 干接缝节段拼装桥墩拟静力试验研究[J]. 振动与冲击,2011,30(4):211-216.
GAO Jing, GE Ji-ping, LIN Tie-liang. Pseudo static test for pre-cast segmental bridge columns with dry joints[J]. Journal of Vibration and Shock, 2011, 30(4): 211-216.
[10] 张凯迪,贾俊峰,郭彤,等. 预应力连接预制节段桥墩抗震性能数值仿真分析[J]. 工程科学与技术,2022,54(6):176-184.
ZHANG Kai-di, JIA Jun-feng, GUO Tong, et al. Numerical analyses on seismic performance of precast segmental prestressed bridge columns[J]. Advanced Engineering Sciences, 2022, 54(6): 176-184.
[11] 孙治国,王东升,司炳君,等.采用预应力筋进行RC桥墩地震损伤控制的试验研究[J]. 土木工程学报,2014,47(1):107-116.
SUN Zhi-guo, WANG Dong-sheng, SI Bing-jun, et al. Experimental research on the seismic damage control techniques for RC bridge piers by using prestressing tendons[J]. China Civil Engineering Journal, 2014, 47(1): 211-216.
[12] WHITE S, PALERMO A. Quasi-static testing of posttensoined nonemulative column-footing connections for bridge piers[J]. Journal of Bridge Engineering, 2016, 21(6): 04016025.
[13] MANTAWY I M, THONSTAD T, SANDERS D H, et al. Seismic performance of precast, pretensioned, and cast-in-place bridges: shake table test comparison[J]. Journal of Bridge Engineering, 2016, 21(10): 04016071.
[14] 葛继平,闫兴非,王志强. 灌浆套筒和预应力筋连接的预制拼装桥墩的抗震性能[J]. 交通运输工程学报,2018,18(2):42-52.
GE Ji-ping, YAN Xing-fei, WANG Zhi-qiang. Seismic performance of prefabricated assembled pier with grouted sleeve and prestressed reinforcements[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 42-52.
[15] WANG Z Q, QU H Y, LI T T, et al. Quasi-static cyclic tests of precast bridge columns with different connection details for high seismic zones[J]. Engineering Structures, 2018, 158: 13-27.
[16] 庄建杰,李辰,江辉,等. 京雄快线预制装配式桥墩足尺模型拟静力试验研究[J/OL]. 土木工程学报,1-10. DOI: 10.15951/j.tmgcxb.23080705.
ZHUANG Jian-jie, LI Chen, JIANG Hui, et al. Quasi-static experimental study on full-scale prefabricated bridge pier of Beijing-Xiong'an transit express line[J/OL]. China Civil Engineering Journal, 1-10. DOI: 10.15951/j.tmgcxb. 23080705.
[17] MANDER J B, PRIESTLEY M N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804-1826.
[18] DAWOOD H, ELGAWADY M, HEWES J. Behavior of segmental precast posttensioned bridge piers under lateral loads[J]. Journal of Bridge Engineering, 2011, 17(5): 735-46.
[19] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范:GB 50010-2010[S]. 北京:中国建筑工业出版社,2015.
[20] BRENKUS N R, TATAR J, HAMILTON H R, et al. Simplified finite element modeling of post-tensioned concrete members with mixed bonded and unbonded tendons[J]. Engineering Structures, 2019, 179: 387-397.
[21] 中华人民共和国住房和城乡建设部. 预应力混凝土结构设计规范:JGJ 369-2016[S]. 北京:中国建筑工业出版社,2016.
[22] 中华人民共和国住房和城乡建设部. 钢筋套筒灌浆连接应用技术规程:JGJ 355-2015[S]. 北京:中国建筑工业出版社,2015.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}