地铁车辆段轨枕垫与道砟垫组合减振效果研究

蒲前华1, 2, 韦凯1, 2, 贺天龙3, 刘杰3, 肖读杰1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 20-29.

PDF(5365 KB)
PDF(5365 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 20-29.
论文

地铁车辆段轨枕垫与道砟垫组合减振效果研究

  • 蒲前华1,2,韦凯1,2,贺天龙3,刘杰3,肖读杰1,2
作者信息 +

Combined vibration reduction effect of sleeper pad and ballast pad in metro depot

  • PU Qianhua1,2, WEI Kai1,2, HE Tianlong3, LIU Jie3, XIAO Dujie1,2
Author information +
文章历史 +

摘要

为了研究地铁列车通过车辆段道岔区剧烈的轮轨相互作用力而诱发振动超限问题,依靠轨枕垫和道砟垫良好的弹性和阻尼特性,在道岔区敷设轨枕垫和道砟垫,实现道岔刚度均匀化和缓解振动超限问题提供了有效方法。基于道岔刚度均匀化原则和道岔钢轨-岔枕有限元模型,对轨枕垫刚度均匀化进行设计,探讨轨枕垫刚度均匀化前后、轨枕垫布置范围以及扣件刚度对道岔刚度均匀化的影响,结合钢轨纵向挠度变化率限值,明确道岔刚度均匀化初步设计方案;然后建立车辆-道岔-有砟道床耦合动力学模型,并计算道岔刚度均匀化前后的试验落轴高度,采用室内落轴试验评价道砟垫+轨枕垫组合措施减振效果,明确道岔刚度均匀化最终设计方案;最后开展现场实测试验验证道岔刚度均匀化后减振效果。研究结果表明:在道岔区铺设轨枕垫有助于改善道岔刚度沿纵向不均匀的情况;建议在非辙叉区与辙叉区采用分区设计,以满足道岔区的钢轨纵向挠度变化率限值和减振效果需求;扣件刚度对道岔辙叉区刚度均匀化的影响不显著;采用道砟垫时,Z振级最大插入损失为9 dB左右,采用道砟垫与轨枕垫组合措施的减振效果能达到15 dB左右;现场实测结果说明轨枕垫+道砟垫的组合减振方式能够达到预期的减振效果。

Abstract

To investigate the problem of excessive vibration induced by the severe wheel-rail interaction of metro trains passing through the turnout area of the depot, relying on the good elasticity and damping characteristics of the sleeper pad and the ballast pad. Laying sleeper pad and ballast pad in turnout area provides an effective method to realize the homogenization of turnout stiffness and alleviate the problem of vibration over limit. Based on the principle of turnout stiffness homogenization and finite element model of turnout rail-turnout sleeper, the stiffness homogenization of sleeper pad is designed, and the influence of the stiffness before and after the stiffness homogenization of sleeper pad, the layout range of sleeper pad and the stiffness of fastener on the stiffness homogenization of turnout is discussed. Combined with the limit value of rail longitudinal deflection change rat, the preliminary design scheme of switch stiffness homogenization was clarified. Then, the coupled dynamic model of vehicle- turnout -ballast bed is established, and the test shaft drop height before and after the turnout stiffness homogenization is calculated. The indoor shaft drop test is used to evaluate the vibration reduction effect of the combination measures of ballast pad and sleeper pad, and the final design scheme of turnout stiffness homogenization is defined. Finally, field test is carried out to verify the damping effect of turnout stiffness homogenization. The results show that laying the sleeper pad in the turnout area is helpful to improve the uneven stiffness of the turnout along the longitudinal direction. A zoning design is recommended for the non-frog and frog areas to meet the limit value of rail longitudinal deflection change rate and the demand of vibration reduction effect in the turnout area. The stiffness of fastener has no significant effect on the homogenization of stiffness in the turnout area. When the ballast pad is used, the maximum insertion loss of Z vibration level is about 9 dB, and the vibration reduction effect of the combination of ballast pad and sleeper pad can reach about 15 dB. Field measurement results show that the combined damping method of sleeper pad and ballast pad can achieve the expected damping effect.

关键词

地铁车辆段 / 刚度均匀化 / 轨枕垫 / 道砟垫 / 减振效果

Key words

metro depot / stiffness homogenization / sleeper pad / ballast pad / damping effect

引用本文

导出引用
蒲前华1, 2, 韦凯1, 2, 贺天龙3, 刘杰3, 肖读杰1, 2. 地铁车辆段轨枕垫与道砟垫组合减振效果研究[J]. 振动与冲击, 2024, 43(23): 20-29
PU Qianhua1, 2, WEI Kai1, 2, HE Tianlong3, LIU Jie3, XIAO Dujie1, 2. Combined vibration reduction effect of sleeper pad and ballast pad in metro depot[J]. Journal of Vibration and Shock, 2024, 43(23): 20-29

参考文献

[1] 冯青松, 王子玉, 刘全民, 等. 地铁车辆段不同区域振动特性对比分析[J]. 振动与冲击, 2020, 39(14): 179-185+200.
FENG Qingsong, Wang Ziyu, LIU Quanmin, et al. Comparative analysis of environmental vibration characteristics in different regions of a metro depot [J]. Journal of Vibration and Shock, 2020, 39 (14): 179-185+200.
[2] 陈艳明, 冯青松, 刘庆杰, 等. 下沉式地铁车辆段咽喉区车致振动特性[J]. 交通运输工程学报, 2020, 20(3): 51-60.
CHEN Yanming, FENG Qingsong, LIU Qingjie, et al. Train-induced vibration characteristics in throat area of sinking metro depot[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 51-60.
[3] CAO Zhiliang, GUO Tong, ZHANG Zhiqiang, et al. Measurement and analysis of vibrations in a residential building constructed on an elevated metro depot[J]. Measurement, 2018, 125: 394-405.
[4] 韦安祺. 地铁车辆段上盖开发道岔减振降噪关键技术研究[J]. 铁道勘察, 2022, 48(02): 109-114.
WEI Anqi. Reseach on key technologies of the vibration and noise reduction of turnout for the over-track buildings development for metro depots[J]. Railway Survey, 2022, 48(02): 109-114.
[5] 刘锦辉, 刘鹏辉, 杨宜谦, 等. 高架线减振轨道减振降噪效果测试与分析[J]. 振动与冲击, 2022, 41(15): 83-89.
LIU Jinhui, LIU Penghui, YANG Yiqian, et al. Tests and analysis for vibration and noise reduction effect of track on metro visduct[J]. Journal of Vibration and Shock, 2022, 41(15): 83-89.
[6] 邹超, 冯青松, 何卫. 列车运行引起地铁车辆段与上盖建筑环境振动研究综述[J]. 交通运输工程学报, 2023, 23(01): 27-46.
ZOU Chao, FENG Qingsong, HE Wei. Train-induced vibration transmission within over-track buildings in different areas of metro depot[J]. Journal of Traffic and Transportation Engineering, 2023, 23(01): 27-46.
[7] 林珊, 陈艳明, 冯青松. 地铁车辆段减振道岔减振特性试验研究[J]. 铁道工程学报, 2023, 40(01): 21-27.
LIN Shan, CHEN Yanming, FENG Qingsong. Experimental research on the vibration reduction characteristics of the vibration reduction turnout in metro depot[J]. Journal of Railway Engineering, 2023, 40(01): 21-27.
[8] 王一干, 刘鹏辉, 李腾, 等. 车辆段轨道减振措施对上盖建筑减振降噪效果试验研究[J]. 振动与冲击, 2020, 39(21): 284-291.
WANG Yiqian, LIU Penghui, LI Teng et al. Tests for effect of track vibration reduction measures in a depot on vibration and noise reduction of a superstructure[J]. Journal of Vibration and Shock, 2020, 39(21): 284-291.
[9] 冉蕾, 马佳骏, 孙井林, 等. 上盖开发车辆段库内轨道高等级减振扣件研发及应用[J]. 铁道勘察, 2020, 46(03): 146-150.
RAN Lei, MA Jiajun, SUN Jinglin et al. Development and application of high-grade vibration-absorbing fasteners for rail track in internal line of depot with property development[J]. Railway Survey, 2020, 46(03): 146-150.
[10] WANG Liuchong, WANG Ping, ZHAO Caiyou, et al. An experimental study on the characteristics of vibration source in urban rail transit turnouts[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(9): 945-957.
[11] 夏禾, 吴萱, 于大明. 城市轨道交通系统引起的环境振动问题[J]. 北方交通大学学报, 1999(4): 7-13.
XIA He, WU Xuan, YU Daming. Environmental vibration induced by urban rail transit system[J]. Journal of Northern Jiaotong University, 1999(4): 7-13.
[12] 中华人民共和国住房和城乡建设部. 城市轨道交通引起建筑物振动与二次辐射噪声限值及其测量方法标准: JGJ/T 170—2009[S]. 北京: 中国建筑工业出版社, 2009.
Ministry of housing and urban-rural development of the people's republic of china. Standard for limits and measurement methods of building vibration and secondary radiation noise caused by urban rail transit: JGJ/T 170-2009 [S]. Beijing: China Architecture and Construction Press, 2009.
[13] 马晓华, 曲村, 郑瑞武. 车辆段上盖开发轨道振动噪声控制技术研究[J]. 现代交通技术, 2021, 18(02): 83-88.
MA Xiaohua, QU Cun, ZHENG Ruiwu. Research on technologies of 'track vibration and noise control for the development of subway depot superstructure[J]. Modern Transportation Technology, 2021, 18(02): 83-88.
[14] 肖读杰, 韦凯, 牛文强, 等. 道岔区敷设橡胶弹簧浮置板轨道的动力仿真[J/OL].铁道标准设计: 1-9[2023-12-12].
XIAO Dujie, WEI Kai, NIU Wenqiang et al. Dynamic simulation of rubber spring floating slab track applied to turnout area [J/OL]. Railway Standard Design: 1-9[2023-12-12].
[15] 曹志刚, 王思崎, 许逸飞, 等. 地铁车辆段上盖建筑道砟垫减振机理与效果[J]. 浙江大学学报(工学版), 2023, 57(01): 71-80.
CAO Zhigang, WANG Siqi, XU Yifei et al. Vibration mitigation mechanism and effect of ballast mats for over-track buildings on metro depot[J]. Journal of Zhejiang University (Engineering and Technology), 2023, 57(01): 71-80.
[16] ZENG Zhiping, HUANG Xiangdong, WANG Weidong, et al. Comparison and analysis of vibration characteristics of different tracks[J]. Noise Control Engineering Journal, 2023, 71(2): 133-146
[17] ZENG Zhiping, Ayoub A.S. Qahtan a, HU Guanghui, et al. Comparative experimental investigation of the vibration mitigation characteristics of ballasted track using the rubber composite sleeper and concrete sleeper under various interaction forces, 2023, 275: 115243
[18] 彭华, 刘麦, 蔡小培, 等. 地铁隧道内碎石道床轨道结构减振特性分析[J]. 北京交通大学学报, 2022, 46(03): 88-94.
PENG Hua, LIU Mai, CAI Xiaopei et al. Analysis on vibration reduction characteristics of ballast bed structure in subway tunnel [J]. Beijing Jiaotong University, 2022, 46(03): 88-94.
[19] 孙大新, 李现博, 刘铁旭. 减振垫浮置道床加嵌套式减振扣件的组合减振应用研究[J]. 城市轨道交通研究, 2021, 24(06): 224-227.
SUN Daxin, LI Xianbo, LIU Tiexu. Application of combination of nested damping fastener and rubber floating slab track[J]. Urban Rail Transit Research, 2021, 24(06): 224-227.
[20] 和振兴, 陈罄超, 周华龙等. 减振扣件与弹性道床垫组合减振关键参数研究[J]. 铁道工程学报, 2019, 36(06): 38-44.
HE Zhenxing, CHEN Zanchao, ZHOU Hualong, et al. Theoretical research on the key dynamic parameters of the fastener-mattress combined vibration damping track[J]. Journal of Railway Engineering, 2019, 36(06): 38-44.
[21] 陈代秀, 李成辉. 无砟轨道中减振垫组合减振性能对比分析[J]. 铁道标准设计, 2017, 61(09): 60-64.
CHEN Daixiu, LI Chenghui. Comparative analysis of vibration reduction performance of ballast track with different anti-vibration pad combinations[J]. Railway Standard Design, 2017, 61(09): 60-64.
[22] 韦凯, 王平. 铁路轨道高聚物弹性元件刚度设计方法与应用[M]. 北京: 科学出版社, 2023.
WEI Kai, WANG Ping. Stiffness design method and application of polymer elastic elements for railway track[M]. Beijing: Science Press, 2023.
[23] 陶子渝, 汪益敏, 邹超. 基于阻抗和功率守恒法的地铁车辆段上盖建筑车致振动预测模型研究[J]. 振动与冲击, 2022, 41(07): 62-67+73.
TAO Ziyu, WANG Yimin, ZOU Chao. Prediction model of vehicle-induced vibration of metro depot superstructure based on impedance and power conservation method[J]. Journal of Vibration and Shock, 2022, 41 (07): 62-67+73.
[24] 王树国, 易强, 王猛, 等. 钢岔枕振动特性及结构优化研究[J]. 振动与冲击, 2022, 41(17): 18-24.
WANG Shuguo, YI Qiang, WANG Meng, et al. Vibration characteristics and structural optimization of steel switch sleeper[J]. Journal of Vibration and Shock, 2022, 41 (17): 18-24.
[25] ALFI S, BRUNI S. Mathematical modelling of train turnout interaction[J]. Vehicle System Dynamics, 2009, 47(5): 551-574.
[26] 郭无极, 曾志平, 王卫东, 等. 12号道岔区敷设钢弹簧浮置板的安全性研究[J]. 铁道科学与工程学报, 2022, 19(11): 3208-3216.
GUO Wuji, ZENG Zhiping, WANG Weidong et al. Safety study of steel spring floating plates applied to No. 12 turnout [J]. Journal of Railway Science and Engineering, 2022, 19(11): 3208-3216.
[27] He Zhenxing, Zhai Wanming, Wang Yukui, et al. Theoretical and experimental study on vibration reduction and frequency tuning of a new damped-sleeper track. Construction and building materials, 2022, 336: 127420.
[28] ZHAI Wangming. Vehicle-track-coupled dynamics [M]. 4th ed. Beijing: Science Press, 2015: 47-54.
[29] 秦晓特. 某工程车过道岔动力学性能分析[D]. 成都: 西南交通大学, 2022.
QIN Xiaote. Dynamic performance analysis of an engineering vehicle passing turnout[D]. Chengdu: Southwest Jiaotong University, 2022.
[30] 李建森, 廖英英, 孙梦颖, 等. 地铁车辆段用道砟垫减振性能落轴试验研究[J]. 铁道科学与工程学报, 2022, 19(10): 2903-2909.
LI Jiansen, LIAO Yingying, SUN Mengying et al. Drop load test on vibration reduction of ballast mat used in metro depot condition [J]. Journal of Railway Science and Engineering, 2022, 19(10): 2903-2909. 

PDF(5365 KB)

208

Accesses

0

Citation

Detail

段落导航
相关文章

/