惯容式阻尼器耗能减振机理分析研究

李瑞林 1, 2 , 刘金龙 1, 2, 林均歧 1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 220-229.

PDF(3325 KB)
PDF(3325 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 220-229.
论文

惯容式阻尼器耗能减振机理分析研究

  • 李瑞林 1,2 , 刘金龙 1,2,林均歧 1,2
作者信息 +

Energy dissipation and vibration reduction mechanism analysis of inertial dampers

  • LI Ruilin1,2, LIU Jinlong1,2, LIN Junqi1,2
Author information +
文章历史 +

摘要

惯容是一种新型的力学元件,其常与弹簧元件和阻尼元件相互连接后形成惯容式阻尼器,以协同发挥耗能减振作用。在工程结构的振动控制中,惯容式阻尼器(如调谐惯性阻尼器(tuned inerter damper, TID)和调谐黏滞质量阻尼器(tuned viscous mass damper,TVMD))往往比传统的粘滞阻尼器具有更出色的减振性能。为了探究TID和TVMD这两种惯容式阻尼器的减振机理及优点,本文基于简化的单自由度减振结构,利用动力学理论推导了两种惯容式阻尼器在动力条件下为结构提供的附加等效刚度系数和阻尼系数的表达式。通过对这些表达式的分析研究,得出了惯容式阻尼器提供附加正负刚度和产生耗能增效机制的显式条件。此外,本文还基于滞回曲线展现了惯容元件的负刚度特性,并说明了在耗能增效机制下,阻尼器内部惯容元件和弹簧元件对粘滞阻尼元件两端响应的放大作用,从而直观解释了惯容式阻尼器的减振优势。

Abstract

Inertia dampers are a new type of mechanical element, which are often interconnected with spring and damping elements to form inertia dampers to synergize energy dissipation and vibration damping. In the vibration control of engineering structures, inertia dampers (e.g., TIDs and TVMDs) often have better vibration damping capabilities than conventional viscous dampers. In order to investigate the vibration damping mechanism and advantages of the two types of inertia dampers, TID and TVMD, this paper, based on a simplified SDOF structure, utilizes the kinetic theory to derive the expressions for the additional equivalent stiffness coefficients and damping coefficients provided by the two types of inertia dampers to the structure under dynamic conditions. The explicit conditions for the inertia dampers to provide additional positive and negative stiffness and to produce the damping enhancement principle are derived from the analytical study of these expressions. In addition, this paper shows the negative stiffness characteristics of the inerter element based on the hysteresis curve and illustrates the amplification of the response of both ends of the viscous damping element by the inertia element and the spring element inside the damper under the damping enhancement principle, which intuitively explains the vibration-damping advantages of the inertia dampers.

关键词

振动控制 / 惯容 / 调谐惯容式阻尼器 / 调谐粘滞质量阻尼器 / 理论分析

Key words

vibration control / inerter / tuned inerter damper(TID) / tuned viscous mass damper(TVMD) / mechanism analysis 

引用本文

导出引用
李瑞林 1, 2 , 刘金龙 1, 2, 林均歧 1, 2. 惯容式阻尼器耗能减振机理分析研究[J]. 振动与冲击, 2024, 43(23): 220-229
LI Ruilin1, 2, LIU Jinlong1, 2, LIN Junqi1, 2. Energy dissipation and vibration reduction mechanism analysis of inertial dampers[J]. Journal of Vibration and Shock, 2024, 43(23): 220-229

参考文献

[1]  Arakaki T, Kuroda H, Arima F, et al. Development of seismic devices applied to ball screw : Part 1 Basic performance test of RD-series[J]. Journal of Architecture and Building Science, 1999, 5(8): 239-244. 
[2]  Kawamata S. Development of a vibration control system of structures by means of mass pumps[M]. Tokyo, Japan: Institute of Industrial Science, University of Tokyo, 1973.
[3]  Kawamata S. Liquid type mass damper with elongated discharge tube[P]. United States: 4,872,649, 1989.
[4]  Saito K, Toyota K, Nagae K, et al. Dynamic loading test and its application to a high-rise building of viscous damping devices with amplification system[C]. Proceedings of the Third World Conference on Structural Control, Como, Italy, 2002.
[5]  Saito K, Inoue N. A study on optimum response control of passive control systems using viscous damper with inertial mass: substituting equivalent nonlinear viscous elements for linear viscous elements in optimum control systems[J]. Journal of Architecture and Building Science, 2007, 13(26): 457-462. 
[6]  Saito K, Kurita S, Inoue N. Optimum response control of 1-DOF system using linear viscous damper with inertial mass and its Kelvin-type modeling[J]. Journal of Structural Engineering, 2007, 53: 53-66. 
[7]  Ikago K, Sugimura Y, Saito K, et al. Simple design method for a tuned viscous mass damper seismic control system[C]. Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, 2012.
[8]  Inoue N, Ikago K. Displacement control design of buildings: design method of long-period seismic isolation buildings against earthquake[M]. Tokyo, Japan: Maruzen Publishing, 2012.
[9]  Smith M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47(10): 1648-1662.
[10] 张瑞甫, 曹嫣如, 潘超. 惯容减震(振)系统及其研究进展[J]. 工程力学, 2019, 36(10): 8-27. 
ZHANG Ruifu, CAO Yanru, PAN Chao. Inerter system and state-of-art[J]. Engineering Mechanics, 2019, 36(10): 8-27.
[11] Ikago K, Saito K, Inoue N. Seismic control of single-degree-of-freedom structure using tuned viscous mass damper[J]. Earthquake Engineering & Structural Dynamics, 2012, 41(3): 453-474.
[12] Saito K, Sugimura Y, Inoue N. A study on response control of a structure using viscous damper with inertial mass[J]. Journal of structural engineering, 2008, 54(B): 635-648. 
[13] Saito K, Sugimura Y, Nakaminami S, et al. Vibration tests of 1-story response control system using inertial mass and optimized softy spring and viscous element[C]. The 14th World Conference on Earthquake Engineering, Beijing, China, 2008.
[14] Arai T, Aburakawa T, Ikago K, et al. Verification on effectiveness of a tuned viscous mass damper and its applicability to non-linear structural systems[J]. Journal of Structural & Construction Engineering, 2009, 645(74): 1993-2002.
[15] Kida H, Watanabe Y, Nakaminami S, et al. Full-scale dynamic tests of tuned viscous mass damper with force restriction mechanism and Its analytical verification[J]. Journal of Structural and Construction Engineering, 2011, 76(665): 1271-1280. 
[16] Lazar I F, Neild S A, Wagg D J. Using an inerter-based device for structural vibration suppression [J]. Earthquake Engineering & Structural Dynamics, 2014, 43(8): 1129―1147. 
[17] Lazar I F, Neild S A, Wagg D J. Inerter-based vibration suppression systems for laterally and base-excited structures[C]. Proceedings of EURODYN 2014-9th International Conference on Structural Dynamics, Porto, Portugal, 2014: 1525―1530.
[18] Lazar I F, Neild S A, Wagg D J. Design and performance analysis of inerter-based vibration control systems[C]. Dynamics of Civil Structures, Volume 4: Proceedings of the 32nd IMAC, 2014: 493―500.
[19] Den Hartog J P. Mechanical vibrations[M]. 4th. New York: Dover, 1956.
[20] 李超, 张瑞甫, 赵志鹏, 等. 调谐黏滞质量阻尼器基于遗传算法的参数优化研究[J]. 结构工程师, 2016, 32(4): 124―131.
LI Chao, ZHANG Ruifu, ZHAO Zhipeng, et al. Optimum study of tuned viscous mass dampers based on genetic algorithm [J]. Structural Engineers, 2016, 32(4): 124― 131. 
[21] 阎武通, 韩冰, 文永奎. 新型调谐黏滞质量阻尼器对斜拉桥的减震控制分析[J]. 土木工程学报, 2016(增刊1): 66-71. 
YAN Wutong, HAN Bing, WEN Yongkui. Seismic control analysis of cable-stayed bridge based on tuned viscous mass damper[J]. China Civil Engineering Journal, 2016 (Suppl 1): 66-71.
[22] 文永奎, 陈政清, 韩冰, 等. TVMD的减振机理及其提升连续梁减震性能的研究[J]. 振动工程学报, 2018, 31(04): 599-610.
WEN Yongkui, CHEN Zhengqing, HAN Bing, et al. Control mechanism of TVMD and its performance improvement for sismic mitigation of continuous bridge[J]. Journal of Vibration Engineering,2018, 31(04): 599-610.
[23] 李壮壮,申永军,杨绍普, 等. 基于惯容-弹簧-阻尼的结构减振研究[J]. 振动工程学报. 2018, 31(06): 1061-1067
LI Zhuangzhuang, SHEN Yongjun, YANG Shaopu, et al. Study on vibration mitigation based on inerter-spring-damping structure[J]. Journal of Vibration Engineering, 2018, 31(06): 1061-1067
[24] Parminder S K. The use of tuned inerter dampers in cable-stayed bridges to suppress unwanted cable vibrations[R]. Department of Mechanical and Materials Engineering, 2018.
[25] ZHANG R, ZHAO Z, PAN C, et al. Damping enhancement principle of inerter system[J]. Structural Control and Health Monitoring, 2020, 27(5): e2532. 
[26] 潘超, 韩笑, 张瑞甫, 等. 基于最大耗能增效原则的惯容减震系统解析设计公式[J]. 工程力学. 2023, 40(4): 91-101.
PAN Chao, HAN Xiao, ZHANG Ruifu, et al. Closed-form design formula for inerter system based on the principle of maximum damping enhancement. Engineering Mechanics. 2023, 40(4): 91-101.
[27] Zhang S Y, Jiang J Z, Neild S. Passive vibration suppression using inerters for a multi-storey building structure[C]. Journal of Physics: Conference Series 744, 2016: 012044-1-012044-9.
[28] Zhang S Y, Jiang J Z, Neild S. Optimal configurations for a linear vibration suppression device in a multi‐storey building [J]. Structural Control & Health Monitoring, 2017, 24(3): e1887-1-e1887-17.
[29] 康迎杰,彭凌云,刘庆宽,等. 近断层脉冲地震作用下调谐型阻尼器对隔震结构的减震控制[J]. 工程力学, 2023: 1-14.
KANG Yinjie, PENG Lingyun, LIU Qingkuan, et al. Seismic control of tuned dampers for seismic isolated structures under near-fault pulse-like ground motions[J]. Engineering Mechanics. 2023: 1-14.
[30]李创第,王瑞勃,江丽富,等. 多自由度混联I型惯容减震系统地震响应分析[J]. 振动与冲击,2023, 42(22): 19-28.
LI Chuangdi, WANG Ruibo, JIANG Lifu, et al. Seismic response analysis of multi-degree-of-freedom structures with a series-parallel layout I inerter system[J]. Journal of Vibration and Shock. 2023, 42(22): 19-28.
[31]乔浩帅,黄鹏. 基于一阶模态控制的惯质吸振器抗风设计[J]. 振动与冲击, 2023, 42(15): 65-72.
QIAO Haoshuai, HUANG Peng. Wind resistant design of structure using IVAs based on first order modal control[J]. Journal of Vibration and Shock. 2023, 42(15): 65-72.
[32] Chopra K. Dynamics of structures: Theory and applications to earthquake engineering[M]. New Jersey: Prentice-Hall, Inc, 2009.

PDF(3325 KB)

Accesses

Citation

Detail

段落导航
相关文章

/