考虑水-结构-土相互作用的桥墩自振频率半解析解

傅大宝1, 2, 卢哲超2, 蔡辉腾3, 李芳4, 徐嘉隽3, 郭阳3, 金星1, 3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 240-249.

PDF(2440 KB)
PDF(2440 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 240-249.
论文

考虑水-结构-土相互作用的桥墩自振频率半解析解

  • 傅大宝1,2,卢哲超2,蔡辉腾3,李芳4,徐嘉隽3,郭阳3,金星1,3
作者信息 +

Semi-analytical natural frequencies solution of bridge pier considering water-structure-soil interaction#br#

  • FU Dabao1,2, LU Zhechao2, CAI Huiteng3, LI Fang4, XU Jiajun3, GUO Yang3, JIN Xing1,3
Author information +
文章历史 +

摘要

建立考虑水-结构-土相互作用的桥墩结构自振频率半解析解,并通过实测数据进行验证。以单个桥墩为研究对象,将“桥墩-承台-桩基”结构体系简化为Bernoulli‑Euler梁,采用附加质量模型模拟水-结构相互作用,采用弹性Winkler地基模型模拟桩-土相互作用,建立考虑水-结构-土相互作用的桥墩结构振动控制方程。使用分离变量法得到结构振型函数,根据边界条件建立矩阵方程,通过求解方程的特征值得到结构自振频率。以福州浦上大桥E11桥墩为例,将海底地震仪(ocean bottom seismometer,OBS)核心地震计安装在承台处,采集桥墩的振动响应并提取结构自振频率。同步安装陆地地震仪验证OBS水下监测的有效性,通过对比半解析解、有限元解和实测值验证桥墩结构半解析解的合理性。在此基础上,分析土-结构相互作用、水-结构相互作用对结构自振频率的影响。结果表明,OBS能够满足桥墩自振频率水下测试的环境要求;本文建立的考虑水-结构-土相互作用的桥墩结构自振频率半解析解合理;土-结构、水-结构相互作用会降低结构的一阶自振频率,其中土-结构相互作用的影响比水-结构相互作用更显著。

Abstract

This study presented the derivation of oscillation equation for bridge piers taking into account the water-structure-soil interaction, and verified its accuracy with field measurement. The pier-cap-plie structure system was simplified as Bernoulli‑Euler beam, with water-structure interaction(WSI) represented by the added mass and soil-structure interaction(SSI) represented by elastic Winkler model. Structural vibration mode functions were derived using variable separation method. Natural frequencies were determined by solving the eigenvalues of a matrix equation established in accordance with boundary conditions. The E11 pier of Fuzhou Pushang Bridge was used as a case study. The core seismograph of the ocean bottom seismograph (OBS) was installed on bridge cap, respectively, to collect the vibration responses. Additionally, the natural frequencies were extracted. A land seismograph is synchronously installed to validate the effectiveness of OBS underwater monitoring. The rationality of the semi-analytical solution of the natural frequency for bridge piers was verified by comparing it with the finite element solutions and measured values. Furthermore, the impact of SSI and WSI on the natural frequency was analyzed. The results show that OBS was able to meet the environmental requirements for underwater testing of bridge piers. The semi-analytical solution for bridge piers considering water-structure-soil interaction was reasonable. The SSI and WSI were able to reduce the first natural frequency of the bridge piers, among which the influence of SSI is more significant than that of WSI.

关键词

桥墩;自振频率;水-结构-土相互作用;海底地震仪(OBS);有限元分析  /

Key words

bridge pier / natural frequency / water-structure-soil interaction / ocean bottom seismometer(OBS) / finite element analysis

引用本文

导出引用
傅大宝1, 2, 卢哲超2, 蔡辉腾3, 李芳4, 徐嘉隽3, 郭阳3, 金星1, 3. 考虑水-结构-土相互作用的桥墩自振频率半解析解[J]. 振动与冲击, 2024, 43(23): 240-249
FU Dabao1, 2, LU Zhechao2, CAI Huiteng3, LI Fang4, XU Jiajun3, GUO Yang3, JIN Xing1, 3. Semi-analytical natural frequencies solution of bridge pier considering water-structure-soil interaction#br#[J]. Journal of Vibration and Shock, 2024, 43(23): 240-249

参考文献

[1] Wardhana K, Hadipriono FC. Analysis of recent bridge failures in the United States [J]. Journal of Performance of Constructed Facilities, 2003, 17(3): 144-150.
[2] Liao K W, Cheng M Y, Chiu Y F, et al. Preliminary bridge health evaluation using the pier vibration frequency[J]. Construction and Building Materials, 2016, 102, Part1: 552-563.
[3] Boujia N, Schmidt F, Chevalier C, et al. Using rocking frequencies of bridge piers for scour monitoring[J]. Structural Engineering International, 2020, 31(2): 286-294.
[4] 梁发云,王琛,贾承岳,等. 冲刷深度对简支桥模态参数影响的模型试验[J]. 振动与冲击,2016,35(14):145-150.
LIANG Fa-yun, WANG Chen, JIA Cheng-yue, et al. Model test on the influence of scour depth on modal parameters of simply supported bridge[J]. Journal of Vibration and Shock, 2016, 35(14): 145-150.
[5] KO Y Y, LEE W F, CHANG W K, et al. Evaluation of Scour of Bridge Foundations Using Vibration Measurement[C]// ASCE International Conferenceon Scour and Erosion. Reston: ASCE, 2010: 1-10.
[6] 高广运,谢伟,陈娟,等. 高铁运行引起的高架桥群桩基础地面振动衰减分析[J]. 岩土力学,2019,40(8):3197-3206.
GAO Guang-yun, XIE Wei, CHEN Juan, et al. Ground vibration attenuation of viaduct and pile-group foundation induced by moving high-speed train[J]. Rock and Soil Mechanics, 2019, 40(8): 3197-3206.
[7] 陈洋洋,谭平,温留汉•黑沙,等. 规则梁桥单墩-质点隔震体系地震时程响应半解析法[J]. 地震工程与工程振动,2013,33(3):183-191.
CHEN Yang-yang, TAN Ping, Wenliuhan•Heisha, et al. Semi-analytical method for time-history responses of single column and mass systems used to seismic isolated regular bridges[J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(3): 183-191.
[8] Chen Y, Lv Y, Wu K, et al. Numerical analysis of bridge piers under earthquakes considering pile-soil interactions and water-pier interactions[J]. Ocean Engineering, 2022, 266, Part 4: 113023.
[9] 闫晓宇,李忠献,李勇,等. 考虑土-结构相互作用的多跨连续梁桥振动台阵J试验研究[J]. 土木工程学报,2013,46(11):98-104.
YAN Xiao-yu, LI Zhong-xian, LI Yong, et al. Shaking tables test on a long-span continuous girder bridge considering soil-structure interaction[J]. China Civil Engineering Journal, 2013, 46(11): 98-104.
[10] Homaei F, Yazdani M. The probabilistic seismic assessment of aged concrete arch bridges: The role of soil-structure interaction[J]. Structures, 2020, 28: 894-904.
[11] 席义博,龚优华,潘嘉宁,等. 单桩基础弱化对海上风机动力响应的影响[J]. 中南大学学报(自然科学版),2023,54(1):229−237.
XI Yi-bo, GONG You-hua, PAN Jia-ning, et al. Influence of monopile foundation weakening on dynamic response of offshore wind turbine[J]. Journal of Central South University(Science and Technology), 2023, 54(1): 229-237.
[12] Penzien J, Scneffey C F, Parmelee R A. Seismic analysis of bridges on long piles[J]. Journal of Engineering Mechanics Division, 1964, 90(3): 223-254.
[13] 高昊,王君杰,苏俊省,等. 桩-土水平弹簧系数对桥梁地震反应影响的参数分析[J]. 振动与冲击,2017,36(14):156-167.
GAO Hao, WANG Jun-jie, SU Jun-sheng, et al. Parameter analysis on the influence of soil-pile horizontal spring coefficient on the seismic response of bridges[J]. Journal of Vibration and Shock, 2017, 36(14): 156-167.
[14] 刘振宇,李乔,赵灿晖,等. 深水矩形空心桥墩在地震作用下附加动水压力分析[J].振动与冲击,2008,27(2):53-56+175.
LIU Zhen-yu, LI Qiao, ZHAO Can-hui, et al. Numerical simulation for train stochastic vibrating loads[J]. Journal of Vibration and Shock, 2008, 27(2): 53-56+175.
[15] 刘浪,杨万理,李乔. 深水桥梁墩水耦合抗震分析方法[J]. 西南交通大学学报,2015,50(3):449-453.
LIU Lang, YANG Wan-li, LI Qiao. Seismic analysis method of deep-water bridge pier and water coupling[J]. Journal of Southwest Jiaotong University, 2015, 50(3): 449-453.
[16] Du X L, Wang P G, Zhao M. Simplified formula of hydrodynamic pressure on circular bridge piers in the time domain[J]. Ocean Engineering, 2014, 85: 44-53.
[17] 杜修力,封光,赵密. 高承台群桩基础桥墩的动水附加质量模型验证[J]. 地震工程与工程振动,2014,34(5):81-86.
DU Xiu-li, FENG Guang, ZHAO Mi. Study on hydrodynamic added mass model for bridge pier on high cap pile group foundation[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(5): 81-86.
[18] 黄义铭,赵密,王丕光,等. 动力荷载作用下水-桩-土相互作用简化分析研究[J]. 振动工程学报,2022,35(6):1511-1520.
HUANG Yi-ming, ZHAO Mi, WANG Pi-guang, et al. Simplified analysis of water-pile-soil interaction under dynamic loads[J]. Journal of Vibration Engineering, 2022, 35(6): 1511-1520.
[19] Huang Y M,Wang P G, Zhao M, et al. Dynamic responses of an end-bearing pile subjected to horizontal earthquakes considering water-pile-soil interactions [J]. Ocean Engineering, 2021, 238: 109726.
[20] Wang P G, Zhao M, Du X L. A simple added mass model for simulating elliptical cylinder vibrating in water under earthquake action [J]. Ocean Engineering, 2019, 179: 351-360.
[21] 闫晓宇,李忠献,韩强,等. 考虑土-结构相互作用的大跨度连续刚构桥振动台阵试验研究[J]. 工程力学,2014,31(2):58-65.
YAN Xiao-yu, LI Zhong-xian, HAN Qiang, et al. Shaking tables test on a long-span rigid-framed bridge considering soil-structure interaction[J]. Engineering Mechanics, 2014, 31(2): 58-65.
[22] Makris N, Gazetas G. Dynamic pile-soil-pile interaction. part II: lateral and seismic response[J]. Earthquake Engineering and Structural Dynamics, 1992, 21: 145-162.
[23] 王君杰,赖伟,胡世德. 深水高桩基础桥梁地震水动力效应分析[J]. 同济大学学报(自然科学版),2011,39(5):650-655.
WANG Jun-jie, LAI Wei, HU Shi-de. Seismic hydrodynamic effects on group-pile foundations with caps merged in water[J]. Journal of Tongji University(Natural Science), 2011, 39(5): 650-655.
[24] Jiang H, Wang B X, Bai X Y, et al. Simplified expression of hydrodynamic pressure on deepwater cylindrical bridge piers during earthquakes[J]. Journal of Bridge Engineering, 2017, 22(6): 04017014.
[25] 杨首龙,吴时强,陈昭宾. 闽江下游天然河床的未来演进趋势[J]. 水利水电技术,2013,44(9):111-118.
YANG Shou-long, WU Shi-qiang, CHEN Zhao-bin. Future evolution trend of natural river bed of Lower Minjiang River[J]. Water Resources and Hydropower Engineering, 2013, 44(9): 111-118.
[26] Eimer M, Wiens D A, Cai C, et al. Seismicity of the incoming plate and forearc near the mariana trench recorded by ocean bottom seismographs[J]. Geochemistry Geophysics Geosystems, 2020, 21(4): e2020GC008953.
[27] Wang Y Z, Yang T, Wu Y C, et al. A new broad-band ocean bottom seismograph and characteristics of the seismic ambient noise on the South China Sea seafloor based on its recordings[J]. Geophysical Journal International, 2022, 230(1): 684-695.
[28] Rodriguez I, Manuel-Lazaro A, Carlosena A,et al. Signal processing in ocean bottom seismographs for refraction seismology[J]. IEEE Transactions on Instrumentation and Measurement, 2006, 55(2): 652-658 .
[29] Chabert A, Minshull T A, Westbrook G K, et al. Characterization of a strtgrapicaly constrained gas hydrate system along the western continental margin of Ssvalbard from ocean bottom seismometer data[J]. Journal of Geophysical Research, 2011, 116, B12102.
[30] 郝天珧,游庆瑜. 国产海底地震仪研制现状及其在海底结构探测中的应用[J]. 地球物理学报,2011,54(12): 3352-3361.
Hao T Y, You Q Y. Progress of homemade OBS and its application on ocean bottom structure survey[J]. Chinese Journal of Geophysics, 2011, 54(12): 3352-3361.
[31] 李子正,丘学林,贺恩远,等. 马里亚纳海沟南段TS01测线的广角地震探测和地壳结构[J]. 地球物理学报, 2003,66(11):4691-4704.
LI Zi-zheng, QIU Xue-lin, HE En-yuan, et al. Crustal structures of Southmost Mariana Trench revealed by wide-angle seismic profile TS01[J]. Chinese Journal of Geophysics, 2003, 66(11): 4691-4704.
[32] Zhao M H, Qiu X L, Xia S H, et al. Seismic structure in the northeastern South China Sea: S wave velocity and Vp/Vs ratios derived from three component OBS data[J]. Tectonophysics, 2009, 480(1-4): 183-197.
[33] Protero W A. Ocean bottom seismometer technology[J]. Eos,Tasactions American Geophyscal Union, 1984, 65(13): 113-116.
[34] Liu D, Yang T, Wang Y Z, et al. Pankun: A new generation of broadband ocean bottom seismograph[J]. Sensors, 2023, 23(11): 4995.
[35] 刘丹,杨挺,黎伯孟. 分体式宽频带海底地震仪的研制、测试和数据质量分析[J]. 地球物理学报,2022,65(7):2560-2572.
LIU Dan, YANG Ting, LE Ba Manh, et al. Seismometer-detached broadband ocean bottom seismograph (OBS) : development, test, and data quality analysis [J].  Chinese Journal of Geophysics, 2022, 65(7): 2560-2572.
[36] Ringler A T, Hutt C R. Self-noise models of seismic instruments[J]. Seismological Research Letters, 2010, 81(6): 972-983

PDF(2440 KB)

Accesses

Citation

Detail

段落导航
相关文章

/