多带隙机理融合声学超材料及其低频宽带抑振特性

孙萍, 徐思齐, 王晓乐

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 250-259.

PDF(3390 KB)
PDF(3390 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 250-259.
论文

多带隙机理融合声学超材料及其低频宽带抑振特性

  • 孙萍,徐思齐,王晓乐
作者信息 +

Acoustic metamaterials with multi-bandgap mechanism fusion and their low-frequency broadband vibration suppression characteristics#br#

  • SUN Ping, XU Siqi, WANG Xiaole
Author information +
文章历史 +

摘要

紧凑轻量的低频宽带隙声学超材料在弹性波控制领域具有广阔的应用前景。本文提出了一种结构功能复用的声学超材料基本构型,能够融合布拉格散射带隙、局域共振带隙和惯性放大带隙,具备丰富的带隙调控自由度。建立了无限大尺寸声学超材料板的能带计算有限元模型,结合算例对其带隙特性进行了预报。制备了声学超材料样件并附加于有限尺寸的平直铝板,采用冲击力锤法获取了振动传递函数,验证了带隙计算结果的准确性并衡量了低频宽带抑振效应。试验结果表明,所提出的声学超材料能够在100~1000 Hz的宽频范围内平均衰减平直铝板的结构振动达21 dB,近场声辐射达6 dB。并且,对于大曲率的铝板结构,所提出的声学超材料不仅安装方便,而且同样能够有效体现低频宽带抑振效果。此外,通过参数分析揭示了基座局域共振机构的悬臂刚度和末端质量以及惯性放大机构的附加质量和惯性放大角对带隙特性的影响规律。本研究旨在为低频宽带隙声学超材料的发展提供思路和方法。

Abstract

Compact and lightweight acoustic metamaterials designed for achieving low-frequency and wide bandgap characteristics hold extensive application prospects in manipulation of elastic waves. Herein, a multi-bandgap integration acoustic metamaterial is proposed, capable of integrating Bragg-scattering bandgaps, local-resonance bandgaps, and inertial-amplification bandgaps, having rich degrees of freedom in bandgap regulation. Based on the established finite element simulation model, the bandgap characteristics and formation mechanism of the proposed acoustic metamaterial are theoretically calculated and analyzed. The frequency response functions of a finite-sized plate attached with acoustic metamaterial were measured to verify the predicted bandgap characteristics and to quantify the low-frequency broadband vibration suppression effect. It shows that the proposed acoustic metamaterial can achieve an average reduction of 21 dB in structural vibrations and 6 dB in near-field sound radiation within a wide frequency range of 100 Hz to 1000 Hz. Additionally, for the curved host plate, the proposed acoustic metamaterial also demonstrates the effectively low-frequency broadband vibration suppression effect in experiments. Finally, the influence of structural parameters on the bandgap characteristics is investigated. This study aims to provide ideas and methods for the study of acoustic metamaterials with low-frequency and wide bandgap characteristics.

关键词

声学超材料 / 弹性波 / 带隙 / 抑振

Key words

acoustic metamaterial / elastic wave / bandgap / vibration suppression

引用本文

导出引用
孙萍, 徐思齐, 王晓乐. 多带隙机理融合声学超材料及其低频宽带抑振特性[J]. 振动与冲击, 2024, 43(23): 250-259
SUN Ping, XU Siqi, WANG Xiaole. Acoustic metamaterials with multi-bandgap mechanism fusion and their low-frequency broadband vibration suppression characteristics#br#[J]. Journal of Vibration and Shock, 2024, 43(23): 250-259

参考文献

[1] 杨坤,杨明月,崔世明,等. 大尺寸薄膜型声学超材料复合结构低频宽带隔声性能研究[J]. 振动与冲击,2022,41(22):14-22.
YANG Kun, YANG Ming-yue, CUI Shi-ming, et al. Low-frequency and broadband sound insulation performance of large-scale composite structures based on membrane-type acoustic metamaterials[J]. Journal of Vibration and Shock, 2022,41(22):14-22.
[2] 冯涛,王余华,王晶,等. 结构型声学超材料研究及应用进展[J]. 振动与冲击,2021,40(20):150-157.
FENG Tao, WANG Yu-hua, WANG Jing, et al. Progress in research and application of structural acoustic metamaterials[J]. Journal of Vibration and Shock, 2021,40(20):150-157.
[3] ZHAO Xi-ning, YANG Xiao-dong, ZHANG Wei, et al. Active tuning of elastic wave propagation in a piezoelectric metamaterial beam[J]. AIP Advances, 2021, 11(6): 065009.
[4] TIAN Wei, ZHAO Tian, YANG Zhi-chun. Theoretical modelling and design of metamaterial stiffened plate for vibration suppression and supersonic flutter[J]. Composite Structures, 2022, 282:115010.
[5] CHEN Zhong-sheng, HE Jing, WANG Gang. Vibration bandgaps of piezoelectric metamaterial plate with local resonators for vibration energy harvesting[J]. Shock and Vibration, 2019:1397123.
[6] CHEN Jian, YU Zhen-yang, JIN Hao-ran. Nondestructive testing and evaluation techniques of defects in fiber-reinforced polymer composites: A review[J]. Frontiers in Materials, 2022, 986654.
[7] 杨文,陈凯伦,郭旭,等. 附着式局域共振声子晶体薄板的带隙解析解[J]. 振动与冲击, 2022, 41(8):238-243.
YANG Wen, CHEN Kai-lun, GUO Xu, et al. Analytical solution of band gap in an attached locally resonant phononic crystal thin plate [J]. Journal of Vibration and Shock, 2022, 41(8):238-243.
[8] 沈超明,黄杰,陈墨林,等. 基于多层 S 型局域振子的声子晶体双层梁结构带隙特性研究[J]. 振动与冲击, 2023, 42(2):197-204.
SHEN Chao-ming, HUANG Jie, CHEN Mo-lin, et al. Band gap characteristics analysis of a phononic crystal double-layer beam structure based on multi-layer S-type local oscillator[J]. Journal of Vibration and Shock, 2023, 42(2):197-204.
[9] 金星,张振华. 幂指数棱台局域共振型声子晶体板的带隙特性与减振机理研究[J]. 振动与冲击, 2023, 42(14):107-114.
JIN Xing, ZHANG Zhen-hua. Band gaps characteristics and vibration reduction mechanism of power exponential prismatic local resonance phononic crystal plates[J]. Journal of Vibration and Shock, 2023, 42(14):107-114.
[10] 陈晓刚,赵凯美,聂京凯,等. 基于蝶形准零刚度弹簧的双梁超材料低频带隙研究[J]. 振动与冲击, 2023, 42(17):61-69.
CHEN Xiao-gang, ZHAO Kai-mei, NIE Kai-jing, et al. Low frequency band gap of twin-beam metamaterial based on butterfly quasi-zero stiffness spring[J]. Journal of Vibration and Shock, 2023,  42(17):61-69.
[11] WANG Yan-feng, WANG Yi-ze, WU Bin, et al. Tunable and active phononic crystals and metamaterials[J]. Applied Mechanics Reviews, 2020, 72(4):040801.
[12] Banerjee A, Adhikari S, Hussein M I. Inertial amplification band-gap generation by coupling a levered mass with a locally resonant mass[J]. International Journal of Mechanical Sciences, 2021, 207:106630.
[13] SUN Yong-hang, ZHENG Hui, Lee H. Beam-type metastructure with X-shape inertial amplification mechanisms for vibration suppression[J]. Thin-Walled Structures, 2023, 189:110893.
[14] Mizukami K, Abe K, Senga T. Analytical modeling and 3D printing of locally resonant composite sandwich metamaterials with inertial amplification mechanisms[J]. Composite Structures, 2023, 326:117626.
[15] Zabihi A, Ellouzi C, SHEN Chen. Tunable, reconfigurable, and programmable acoustic metasurfaces: A review[J]. Frontiers in Materials, 2023, 1132585.
[16] Yilmaz C, Kikuchi N. Analysis and design of passive band-stop filter-type vibration isolators for low-frequency applications[J]. Journal of Sound and Vibration, 2006, 291(3-5):1004-1028.
[17] Frandsen N M M, Bilal O R, Jensen J S, et al. Inertial amplification of continuous structures: Large band gaps from small masses[J]. Journal of Applied Physics, 2016, 119(12):124902.
[18] Yuksel O, Yilmaz C. Realization of an ultrawide stop band in a 2-D elastic metamaterial with topologically optimized inertial amplification mechanisms[J]. International Journal of Solids and Structures, 2020, 203:138-150.
[19] XI Chen-yang, DOU Ling-ling, MI Yong-zhen, et al. Inertial amplification induced band gaps in corrugated-core sandwich panels[J]. Composite Structures, 2021, 267:113918.
[20] XI Chen-yang, YU Xiang, CHENG Li, et al. Broadband low-frequency sound insulation of a metamaterial plate with inertial amplification[J]. Applied Acoustics, 2023, 213:109655.
[21] XIAO Yong, WEN Ji-hong, WEN Xi-sen. Flexural wave band gaps in locally resonant thin plates with periodically attached spring–mass resonators[J]. Journal of Physics D: Applied Physics, 2012, 45: 195401.
[22] 朱席席,肖勇,温激鸿,等. 局域共振型加筋板的弯曲波带隙与减振特性[J]. 物理学报, 2016, 65(17):176202.
ZHU Xi-xi, XIAO Yong, WEN Ji-hong, et al. Flexural wave band gaps and vibration reduction properties of a locally resonant stiffened plate [J]. Acta Physica Sinica, 2016, 65(17):176202.
[23] TIAN Xiang-yu, CHEN Wen-jiong, GAO Ren-jing, et al. Merging Bragg and local resonance bandgaps in perforated elastic metamaterials with embedded spiral holes[J]. Journal of Sound and Vibration, 2021, 500: 116036.
[24] Redondo J, Godinho L, Staliunas K, et al. An equivalent lattice-modified model of interfering Bragg bandgaps and Locally Resonant Stop Bands for phononic crystal made from Locally Resonant elements[J]. Applied Acoustics, 2023, 211:109555.
[25] HUANG Zhen, WU Jiu-hui, WANG Chang, et al. Resonant-scattering hybrid device for multiband acoustic topology valley transmission[J].Physical Review B, 2021, 104:094110.
[26] ZHAO Cheng, ZHANG K, ZHAO Peng-cheng, et al. Bandgap merging and backward wave propagation in inertial amplification metamaterials[J]. International Journal of Mechanical Sciences, 2023, 250:108319.
[27] ZHAO Cheng, ZHANG K, ZHAO Peng-cheng, et al. Finite-amplitude nonlinear waves in inertial amplification metamaterials: Theoretical and numerical analyses[J]. Journal of Sound and Vibration, 2023, 560:117802.
[28] LI Jing-ru, YANG Peng, LI Sheng. Multiple band gaps for efficient wave attenuation by inertial amplification in periodic functionally graded beams[J]. Composite Structures, 2021, 271:114130.
[29] SUN Yong-hang, XI Chen-yang, DONG Jing-jie, et al. The bandgap characteristics of a flexural beam with periodic arrays of inertial amplification cantilever-type resonators[J]. Journal of  Applied Physics, 2023, 134:024901.
[30] CAI Yong-qing, WU Jiu-hui, XU Yi-cai, et al. Realizing polarization band gaps and fluid-like elasticity by thin-plate elastic metamaterials[J]. Composite Structures, 2021, 262:113351.
[31] WANG Xing-zhong, PANG Ya-tong, WU Jiu-hui, et al. A broadband metamaterial damper design based on synergetic coupling among multi-cells[J]. Applied Acoustics, 2023, 206:109303.
[32] WANG Xing-zhong, ZHANG Chao, RUI Shi-teng, et al. Multi-scale material/structure integrated elastic metamaterial for broadband vibration absorbing[J]. Materials & Design, 2024, 238:112705.
[33] YU Ri-huan, RUI Shi-teng, WANG Xing-zhong, et al. An integrated load-bearing and vibration-isolation supporter with decorated metamaterial absorbers[J]. International Journal of Mechanical Sciences, 2023, 253:108406.

PDF(3390 KB)

Accesses

Citation

Detail

段落导航
相关文章

/