磁流变变刚度变阻尼扭转振动仿人智能控制

李文峰1, 葛新锋1, 席军2, 李坪洋3, 刘乐1, 高健容1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 270-279.

PDF(3539 KB)
PDF(3539 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 270-279.
论文

磁流变变刚度变阻尼扭转振动仿人智能控制

  • 李文峰1,葛新锋1,席军2,李坪洋3,刘乐1,高健容1
作者信息 +

Artificial intelligent control of torsional vibration with MR variable stiffness variable damping

  • LI Wenfeng1, GE Xinfeng1, XI Jun2, LI Pingyang3, LIU Le1, GAO Jianrong1
Author information +
文章历史 +

摘要

有效的扭转刚度控制可以通过调节系统的固有特性和共振频率改善系统的扭转振动性能、恰当的扭转阻尼调节可以通过耗散扭转振动的能量来抑制扭转振动的幅值。针对扭转刚度和扭转阻尼对传动系统扭转振动的不同影响规律,提出一种基于混合田口遗传算法的磁流变传动系统变刚度变阻尼扭转振动仿人智能控制策略。首先根据所设计的磁流变扭转减振器建立了磁流变变刚度变阻尼传动系统动力学模型;基于混合田口遗传算法对磁流变传动系统扭转刚度和扭转阻尼控制参数的动态寻优结果,设计了一种兼顾时域和频域、具有分区协同、多模态多控制器的仿人智能控制器;随后进行了仿真分析和试验研究,结果表明,在较宽频段内,基于混合田口遗传算法的仿人智能控制均能有效抑制磁流变传动系统的扭转振动;当试验激励频率为3.5Hz时,相对于被动传动系统和改进天棚控制系统,所提仿人智能控制分别将系统的峰值角位移和角速度减小44%、48%和14%、18%,其控制效果明显优于改进天棚控制,显著改善磁流变传动系统的输出特性。

Abstract

Effectively reversing the stiffness control can improve the torsional vibration performance of the system by adjusting the inherent characteristics and resonance frequency of the system. Proper torsional damping adjustment can suppress the amplitude of torsional vibration by dissipating the energy of torsional vibration. For the different influence laws of torsional stiffness and torsional damping on the torsional vibration of transmission systems, a hybrid Taguchi genetic algorithm-based Human-Simulated Intelligent torsional vibration control strategy for magnetorheological (MR) transmission systems with variable stiffness and variable damping was proposed. Firstly, the dynamics model of MR variable stiffness and variable damping transmission system was established. A hybrid Taguchi genetic algorithm was adopted to dynamically seek for the optimal combination of torsional stiffness and torsional damping parameters for MR transmission system under various excitation frequency conditions, and then a human-simulated intelligent controller (HSIC) is designed. Finally, simulation analysis and experimental investigation were carried out. The results indicate that the hybrid Taguchi genetic algorithm-based HSIC with variable stiffness and variable damping can effectively suppress the torsional vibration and significantly improve the output characteristics of the MR transmission system. When the excitation frequency of the test is 3.5Hz, the proposed HSIC system reduces the peak angular displacement and angular velocity of the system by 44%, 48% and 14%, 18%  respectively compared to the passive transmission system and the improved skyhook control system. Furthermore, the control performance of the proposed human-simulated intelligent control algorithm is superior to that of the improved skyhook control algorithm.  

关键词

磁流变 / 变刚度变阻尼 / 混合田口遗传算法 / 仿人智能控制

Key words

Magneto-rheological / variable stiffness and variable damping / hybrid Taguchi genetic algorithm / human simulated intelligent control

引用本文

导出引用
李文峰1, 葛新锋1, 席军2, 李坪洋3, 刘乐1, 高健容1. 磁流变变刚度变阻尼扭转振动仿人智能控制[J]. 振动与冲击, 2024, 43(23): 270-279
LI Wenfeng1, GE Xinfeng1, XI Jun2, LI Pingyang3, LIU Le1, GAO Jianrong1. Artificial intelligent control of torsional vibration with MR variable stiffness variable damping[J]. Journal of Vibration and Shock, 2024, 43(23): 270-279

参考文献

[1] 李琳, 古智超, 张铁. 结合机器人柔体动力学和关节力矩反馈的振动控制[J].振动与冲击, 2022, 41(11): 235-244.
LI Lin, GU Zhichao, LI Tie. Vibration control of robot to combine flexible body dynamics and joint torque feedback [J]. Journal of Vibration and Shock, 2022, 41(11): 235-244.
[2] LI W F, DONG X M, XI J, DENG X, et al. Semi-active vibration control of a transmission system using a magneto-rheological variable stiffness and damping torsional vibration absorber [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2021, 235(10/11):2679-2698.
[3] 高蕾, 刘志浩, 高钦和, 等. 多轴特种车辆传动系统机械摩擦阻力损失与传动效率研究综述 [J]. 振动与冲击, 2023, 42(18): 138-154.
    GAO Lei, LIU Zhihao, GAO Qinhe, et al. Review on the mechanical friction resistance loss and transmission efficiencyof a multi-axle special vehicle transmission system [J]. Journal of Vibration and Shock, 2023, 42(18): 138-154.
[4] 崔庭琼, 李以农, 张运涛, 等. 非对称传动系统主轴断裂机理分析与结构优化研究 [J]. 振动与冲击, 2022, 41(18): 104-112.
    CUI Tingqiong, LI Yinong, ZHANG Yuntao, et al. Fracture mechanism and structure optimization of the main shaft of anasymmetric transmission system [J]. Journal of Vibration and Shock, 2022, 41(18): 104-112.
[5] HE W, OUYANG Q, HU H S, et al. Semi-active control of crankshaft skyhook based on MR torsional damper [J]. Frontiers in Materials, 2022, 49: 933076.
[6] LI W F, DONG X M, YU J Q, et al. Vibration control of vehicle suspension with magneto-rheological variable damping and inertia [J]. Journal of Intelligent Material Systems and Structures, 2021, 32(13): 1484-1503.
[7] 曾泽璀, 张磊, 闫明, 等. 螺杆挤压-旋转式磁流变阻尼器力学特性研究[J]. 振动、测试与诊断, 2022, 42(5): 937-944.
ZENG Zerui, ZHANG Lei, YAN Ming, et al. Fluid-Solid-Thermal staggered iterative coupling analysis for static aerothermoelasticity of wing [J]. Journal of Vibration, Measurement & Diagnosis. 2022, 42(5):937-944. 
[8] 黄浩, 吴杰, 邓兵兵, 等. 多极圆盘式磁流变制动器的设计与优化[J]. 工程设计学报, 2023, 30(3): 297-305.
HUANG Hao, WU Jie, DENG Bingbing, et al. Design and optimization of multipole disc-type magnetorheological brake [J]. Chinese Journal of Engineering Design, 2023, 30(3): 297-305. 
[9] 王书友, 肖鹿, 陈飞, 等. 磁流变离合器非线性迟滞特性试验与建模[J]. 中南大学学报(自然科学版), 2022, 53(6): 2049-2059.
WANG Shuyou, XIAO Lu, CHEN Fei, et al. Experiment and modeling of nonlinear hysteresis property of MR clutch [J]. Journal of Central South University (Science and Technology). 2022, 53(6): 2049-2059.
[10] YU J Q, DONG X M, SU X, QI S. Development and characterization of a novel rotary magnetorheological fluid damper with variable damping and stiffness [J]. Mechanical Systems and Signal Processing, 2022, 165: 108320.
[11] 周云. 磁流变阻尼控制理论与技术 [M]. 北京:科学出版社, 2007.
ZHOU Yun. Magnetorheological damping control theory and technology [M]. Beijing: Science Press, 2007.
[12] 高翔, 牛军川, 贺磊, 等. 基于并联机构的多维隔振系统振动鲁棒最优半主动控制[J]. 上海交通大学学报, 2023: 1-13.
GAO Xiang, NIU Junchuan, HE Lei, et al. Vibration robust optimal semi-active control of the multi-dimensional vibration isolator based on parallel mechanism [J]. Journal of Shanghai Jiaotong University. 2023: 1-13. 
[13] 王成龙, 吴鲁杰, 葛兴福. 国内面向冲击工况的磁流变缓冲技术发展与展望[J]. 应用力学学报, 2023, 40(3): 481-503.
WANG Chenglong, WU Lujie, GE Xingfu. Development and prospect of domestic magnetorheological buffer technology for impact conditions [J]. Chinese Journal of Applied Mechanics. 2023, 40(3): 481-503.
[14] 戴小文, 宋建霖, 岳丽全. 仿人智能控制理论及应用研究进展[J].自动化学报, 2020, 41(x): 1-13.
DAI Xiaowen, SONG Jianlin, YUE Liquan. Research Development in Theory and Application of Human Simulated Intelligent Control [J]. Acta Automatica Sinica, 2020, 41(x): 1−13.
[15] DONG X M, LI Z S, YU M, LIAO C R, et al. Human simulated intelligent control and its application in magneto-rheological suspension [J]. Control Theory & Applications, 2010, 27(2): 249-256.
[16] DONG X M and XIONG G W. Vibration Attenuation of Magnetorheological Landing Gear System with Human Simulated Intelligent Control [J]. Mathematical Problems in Engineering, 2013, 2013: 1-13.
[17] DONG X M, LI W F, YU J Q, PAN C W, et al. Magneto-Rheological Variable Stiffness and Damping Torsional Vibration Control of Powertrain System [J]. Frontiers in Materials, 2020, 7: 1-18.
[18] LI W F, DONG X M, XI J, DENG X, et al. Semi-active vibration control of atransmission system using a  magneto-rheological variable stiffness and damping torsional vibration absorber [J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 2021, 235(10/11): 2679-2698.
[19] CHOI S B, LEE S K, PARK Y P. A hysteresis model for the field-dependent damping force of a magnetorheological damper [J]. Journal of Sound and Vibration, 2001, 245(2): 375-383.
[20] KWOK N M, HA Q P, NGUYEN T H, et al. A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization [J]. Sensors & Actuators A Physical, 2006, 132(2): 441-451.
[21] 李祖枢, 涂亚庆. 仿人智能控制 [M]. 北京:国防工业出版社, 2003.
LI Zushu, TU Yaqing. Human-Simulated Intelligent Control [M]. Beijing: National Defense Industry Press.2003. 
[22] TSAI J T, LIU T K, CHOU J H. Hybrid Taguchi-genetic algorithm for global numerical optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(4): 365-377.
[23] 陈娟. Hilbert-Huang变换及其在信号处理中的应用[D]. 大连: 大连理工大学, 2006.
CHEN Juan. Hilbert-Huang transform and its application in signal processing [D]. Danglian: Dalian University of Technology. 2006. 
[24] 王鹏, 杨绍普, 刘永强, 等. 高速列车磁流变半主动悬挂控制策略研究[J]. 力学学报, 2023, 55(4): 1004-1018.
WANG Peng, YANG Shaopu, LIU Yongqiang, et al. Research on control strategy of magnetorheological semi-active suspension for high-speed train [J]. Chinese Journal of Theoretical and Applied Mechanics. 2023, 55(4): 1004-1018. 
[25] Ye S, Williams K A. Torsional vibration control with an MR fluid brake [J]. Proceedings of SPIE, 2005, 5760:283-292.
[26] Abouobaia E, Bhat R, Sedaghati R. Semi-Active Control of Torsional Vibrations Using a New Hybrid Torsional Damper[J]. European Journal of Pharmacology, 2013, 19(2):191–198.

PDF(3539 KB)

Accesses

Citation

Detail

段落导航
相关文章

/