扭转减振器式全地形车悬架系统设计及舒适性研究

宋勇1, 钱江宁1, 李占龙1, 高山铁2, 孟杰1, 郝鹏祥2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 294-304.

PDF(3750 KB)
PDF(3750 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 294-304.
论文

扭转减振器式全地形车悬架系统设计及舒适性研究

  • 宋勇1,钱江宁1,李占龙1,高山铁2,孟杰1,郝鹏祥2
作者信息 +

Design and comfort study of torsional vibration damper type all-terrain vehicle suspension system#br#

  • SONG Yong1, QIAN Jiangning1, LI Zhanlong1, GAO Shantie2, MENG Jie1, HAO Pengxiang2
Author information +
文章历史 +

摘要

为解决履带式全地形车辆舒适性及抗冲击性能差的问题,提出一种含弧弹簧阻尼结构的扭转减振器式悬架系统,设计了单负重轮悬架系统并开展动力学建模与舒适性分析,研究了不同工况下整车舒适性及抗冲击性能。研究发现:(1)单负重轮悬架系统静、动态特性参数值均在合理的范围内;相同路面车速增加时,单负重轮悬架系统车身垂向加速度和悬架动挠度均方根的相对增长率降低;路面等级、车速增加时,单负重轮悬架系统车身垂向加速度传递率(8.5%~6.5%)以较小的数值呈小幅下降趋势。(2)整车通过D、E级路面和极端路面时,所提悬架系统相对传统扭杆弹簧悬架系统表现出优良的舒适性和抗冲击性,验证了悬架设计方案的正确性和有效性。

Abstract

To solve the problem of poor comfort and impact resistance for all-terrain tracked vehicle, a torsion vibration damper suspension system with arc spring damping structure is proposed. A single load wheel torsion vibration damper suspension system is designed, and its dynamic modelling and comfort analysis are carried out. The comfort and impact resistance of the whole vehicle under different working conditions are studied. It is found that: (1) the static and dynamic parameters of the single load wheel suspension system are within reasonable ranges; under the same road conditions and the increase of vehicle speed, the relative growth rates of the single load wheel suspension system body vertical acceleration root mean square and suspension dynamic deflection root mean square decrease; with the increase of road surface grade and vehicle speed, the body vertical acceleration transmissibility (8.5%~6.5%) shows a slight downward trend with smaller values; (2) when the whole vehicle passes through D, E grade road surfaces and extreme road surfaces, the proposed suspension system shows excellent comfort and impact resistance compared with the traditional torsion bar spring suspension system, which verifies the correctness and effectiveness of the suspension design scheme.

关键词

全地形车 / 悬架 / 扭转减振器 / 履带式 / 舒适性

Key words

all-terrain vehicle / suspension / torsion vibration damper / crawler type / comfort

引用本文

导出引用
宋勇1, 钱江宁1, 李占龙1, 高山铁2, 孟杰1, 郝鹏祥2. 扭转减振器式全地形车悬架系统设计及舒适性研究[J]. 振动与冲击, 2024, 43(23): 294-304
SONG Yong1, QIAN Jiangning1, LI Zhanlong1, GAO Shantie2, MENG Jie1, HAO Pengxiang2. Design and comfort study of torsional vibration damper type all-terrain vehicle suspension system#br#[J]. Journal of Vibration and Shock, 2024, 43(23): 294-304

参考文献

[1] BANERJEE S, BALAMURUGAN V, KRISHNAKU R. Ride Comfort analysis of math ride dynamics model of full tracked vehicle with trailing arm suspension[J]. Procedia Engineering, 2016, 144: 1110-1118.
[2] TERMOUS H, SHRAIM H, TALJ R, et al. Coordinated control strategies for active steering, differential braking and active suspension for vehicle stability, handling and safety improvement[J]. Vehicle System Dynamics, 2019, 57(10): 1494-1529.
[3] VASHIST A, DEEPSHIKHA, KUMAR R. Design and analysis of suspension system for an All-Terrain vehicle [J]. Materials Today: Proceedings, 2021, 47: 3331–3339.
[4] SUN C, XU X, WANG L, et al. Research on hydrodynamic performance of a blended wheel-track amphibious truck using experimental and simulation approaches[J]. Ocean Engineering, 2021, 228(17): 108-124.
[5] 周国锋, 韩飞, 焦标强, 等. 坦克扭力轴的预扭处理及极限承载的数值模拟[J]. 北京工业大学学报, 2005, 31(6): 626-628+646.
ZHOU Guofeng, HAN Fei, JIAO Biaoqiang, et al. Numerical simulation of pre torsion treatment and ultimate bearing capacity of tank torsion shaft[J]. Journal of Beijing University of Technology, 2005, 31(6): 626-628+646.
[6] GAGNEZA G, CHANDRAMOHAN S. Estimation of road loads and vibration transmissibility of torsion bar suspension system in a tracked vehicle[J]. Journal of The Institution of Engineers, 2019, 100(5): 747-761.
[7] SOLOMON U, PADMANABHAN C. Hydro-gas suspension system for a tracked vehicle: Modeling and analysis[J]. Journal of Terramechanics, 2011, 48(2): 125-137.
[8] TANG C, GOODARZI A, KHAJEPOUR A. A novel integrated suspension tilting system for narrow urban vehicles[J]. Journal of Automobile Engineering, 2018, 232(14): 1970-1981.
[9] DESAI R, JANADAR M, KUMAR H, et al. Performance evaluation of a single sensor control scheme using a twin-tube MR damper based semi-active suspension[J]. Journal of Vibration Engineering and Technologies, 2021, 9(6): 1193-1210.
[10] THOMAS T, AMBROISE K, ROLAND S. Comprehen- sive locomotion performance evaluation of all terrain robots[C]. IEEE International Conference on Intelligent Robots and Systems. IEEE, 2006. 4260-4265.
[11] SUN B, JING X. A tracked robot with novel bio‑inspired passive “legs”[J]. Robot Biomim, 2017, 4(1): 1-14.
[12] 吴虎威, 吴光强, 陈祥, 等. 考虑迟滞特性的多级刚度扭转减振器建模及试验验证[J]. 振动与冲击, 2017, 36(2): 170-176.
WU Huwei, WU Guangqiang, CHEN Xiang, et al. Numerical and experimental analysis on multi-staged stiffness clutch dampers considering hysteresis characteristics[J]. Journal of Vibration and Shock, 2017, 36(2): 170-176.
[13] 吴虎威, 吴光强, 陈祥, 等. 新型三级刚度扭转减振器设计开发及性能分析[J]. 机械工程学报, 2019, 55(4): 75-83.
WU Huwei, WU Guangqiang, CHEN Xiang, et al. Design and development of three-stage stiffness clutch damper and its damping performance analysis[J]. Journal of Mechanical Engineering, 2019, 55(4): 75-83.
[14] YILDIZ A, YILMAZ O, KARABULUT H. Structural design optimization of the arc spring and dual-mass flywheel integrated with different optimization methods [J]. Materials Testing, 2022, 64(2): 240-248.
[15] IDEHARA S, FLACH F, LEMES D. Modeling of nonlinear torsional vibration of the automotive powertrain[J]. Journal of Vibration and Control, 2018, 24(9): 1774-1786.
[16] 宋勇, 史佳豪, 刘世闯, 等. 一种刚度阻尼可变的圆弧槽式抗扭振结构: ZL201810846676.0. [P]. 2020-06-30.
[17] ABOUOBAIA E, BHAT R, SEDAGHATI R. Development of a new torsional vibration damper incorporating conventional centrifugal pendulum absorber and magnetorheological damper[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(7): 980-992.
[18] 李伟. 汽车传动系用双质量飞轮的设计方法与扭振隔振特性研究[D]. 长春: 吉林大学, 2009: 35-61.
[19] 郭亚敏. 双质量飞轮扭转减振器非线性结构和特性的研究[D]. 太原: 太原理工大学, 2015: 17-30.
[20] 宋勇, 刘林鑫, 李占龙, 等. 含圆弧缓冲结构的仿袋鼠腿悬架建模与行为特性研究[J]. 西安交通大学学报, 2021, 55(9): 28-38.
SONG Yong, LIU Linxin, LI Zhanlong, et al. Research on modeling and behavioral characteristics of bionic kangaroo leg suspension with circular arc-buffer structures[J]. Journal of Xi'an Jiaotong University, 2021, 55(9): 28-38.
[21] SEKIGUCHI Y, OWAKI D, HONDA K, et al. Ankle–foot orthosis with dorsiflexion resistance using spring-cam mechanism increases knee flexion in the swing phase during walking in stroke patients with hemiplegia[J]. Gait & Posture, 2020, 81: 27-32.
[22] 宋勇, 杜锐, 李占龙, 等. 双菱形仿袋鼠腿悬架的PID和Fuzzy-PID控制特性研究[J]. 振动与冲击, 2020, 39(20): 149-160.
SONG Yong, DU Rui, LI Zhanlong, et al. Characteristics study based on PID and Fuzzy-PID control of adouble-diamond bionic kangaroo leg suspension[J]. Journal of Vibration and Shock, 2020, 39(20): 149-160.
[23] 宋慧新, 顾亮, 张进秋, 等. 高速履带车辆机电悬架惯量分析与滤振缓冲设计[J]. 兵工学报, 2023, 44(2): 380-393.
SONG Huixin, GU Liang, ZHANG Jinqiu, et al. Inertia analysis and vibration filtering buffer design of electromechanical suspension of high speed tracked vehicle[J]. Acta Armamentarii, 2023, 44(2): 380-393.
[24] 董国疆, 颜峰, 韩杰, 等. 车辆悬架零部件载荷谱提取方法研究[J]. 振动与冲击, 2021, 40(02): 103-110.
DONG Guojiang, YAN Feng, HAN Jie, et al. Load spectrum extraction method for automobile suspension components[J]. Journal of Vibration and Shock, 2021, 40(02): 103-110.
[25] JEONG H, YU J, LEE D. Track HM design for dynamic analysis of 4-tracked vehicle on rough terrain using Recurdyn[J]. Transactions of the Korean Society of Mechanical Engineers, 2021, 45(4): 275–283.
[26] 郝丙飞, 王红岩, 芮强, 等. 坦克多体系统动力学建模及模型试验验证[J]. 中国机械工程, 2018, 29(4): 429-433+440.
HAO Bingfei, WANG Hongyan, RUI Qiang, et al. Dynamics modeling and model test verification of tank multi-body systems[J]. China Mechanical Engineering, 2018, 29(4): 429-433+440.
[27] BLIANCIA P, BERSELLI G, BRUZZONE L, et al. A CAD/CAE integration framework for analyzing and designing spatial compliant mechanisms via pseudo-rigid-body methods[J]. Robotics and Computer- Integrated Manufacturing, 2019, 56: 287-302.
[28] 陈轶杰, 张亚峰, 徐龙, 等. 高机动履带车辆动力学建模与悬挂特性优化研究[J]. 中国科学:技术科学, 2023, 53(9): 1545-1555.
CHEN Yijie, ZHANG Yafeng, XU Long, et al. Dynamic modeling of high-mobility tracked vehicles and analysis of the optimization of suspension characteristics[J]. Scientia Sinica Technologica, 2023, 53(9): 1545-1555.
[29] 高树新, 余永生, 蒋永林, 等. 应用ISO2631评价脉冲激励阻尼振动对人体健康的影响[J]. 振动与冲击, 1997(2): 76-80+101.
GAO Shuxin, YU Yongsheng, JIANG Yonglin, et al. Using ISO 2631 to evaluate human health in vibration environment excited by dulses[J]. Journal of Vibration and Shock, 1997(2): 76-80+101.
[30] 王品健, 谢晖, 王杭燕, 等. 履带式车辆通过性能仿真及乘员安全分析[J]. 兵器材料科学与工程, 2020, 43(2): 30-36.
WANG Pinjian, XIE Hui, WANG Hangyan, et al. Passing performance simulation and occupant safety analysis of tracked vehicles[J]. Ordnance Material Science and Engineering, 2020, 43(2): 30-36.

PDF(3750 KB)

131

Accesses

0

Citation

Detail

段落导航
相关文章

/