典型舱段结构三轴振动/热复合环境虚拟试验方法研究

丁镇军1, 欧阳钦山2, 刘飞星2, 董龙雷2, 魏龙1, 3, 任方1, 3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 30-37.

PDF(2938 KB)
PDF(2938 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 30-37.
论文

典型舱段结构三轴振动/热复合环境虚拟试验方法研究

  • DING Zhenjun1, OUYANG Qinshan2, LIU Feixing2, DONG Longlei2, WEI Long1,3, REN Fang1,3
作者信息 +

Virtual test method for triaxial thermal-vibration composite environment of typical cabin section structure

  • 丁镇军1,欧阳钦山2,刘飞星2,董龙雷2,魏龙1,3,任方1,3
Author information +
文章历史 +

摘要

随着航天飞行器面临的力学环境愈发严酷,热与振动环境已成为造成结构损伤和破坏、产品功能下降或失效的关键因素。本文建立了一种考虑三轴振动与热复合环境的虚拟试验方法,以简化的筒形舱段为对象,分别建立石英灯阵高温加热仿真模型与三轴振动仿真模型,并通过实际试验数据得到振动台-夹具传递函数,将三者结合以建立三轴虚拟热振仿真模型。分别通过舱段结构单轴热振试验与三轴热振试验来验证所建模型的准确性,并基于验证后的模型获取三轴振动下结构中央测点随温度时变的传递函数变化情况。由舱段模态试验验证舱段有限元模型的准确性,对比前6阶模态频率误差不超过5%。在单轴热振试验中,仿真模型各测点响应RMS值与试验加速度响应RMS值的误差不超过15%;在三轴向热振试验中RMS误差不超过20%,验证了所建虚拟热振模型的有效性。

Abstract

As space vehicles face increasingly severe mechanical environments, the thermal and vibration conditions have become key factors in causing structural damage, product function degradation, or failure. This paper establishes a virtual test method considering the composite environment of triaxial vibration and heat. Taking the simplified cylindrical cabin structure as the object, the quartz lamp array high-temperature heating simulation model and the triaxial vibration simulation model are established respectively, and the shaker-fixture transfer function is obtained through the experimental data, then the three parts are combined to establish the triaxial virtual thermal vibration simulation model. The accuracy of the model is verified by uniaxial and triaxial thermal vibration experiments, and the transfer function of the central measurement point of the structure with the time-varying temperature is obtained based on the verified model. The accuracy of the finite element model of the structure is verified by a modal test, and the error of the first 6 orders of modal frequencies does not exceed 5%. In the uniaxial thermal vibration experiment, the error between the RMS value of the response of the simulation model and the experimental acceleration response is no more than 15%; in the triaxial thermal vibration test, the RMS error is no more than 20%, which verifies the validity of the proposed virtual thermal vibration method.

关键词

热振复合环境 / 虚拟试验方法 / 石英灯加热仿真 / 三轴振动

Key words

thermal vibration composite environments / virtual test / quartz lamp heating simulation / triaxial vibration

引用本文

导出引用
丁镇军1, 欧阳钦山2, 刘飞星2, 董龙雷2, 魏龙1, 3, 任方1, 3. 典型舱段结构三轴振动/热复合环境虚拟试验方法研究[J]. 振动与冲击, 2024, 43(23): 30-37
DING Zhenjun1, OUYANG Qinshan2, LIU Feixing2, DONG Longlei2, WEI Long1, 3, REN Fang1, 3. Virtual test method for triaxial thermal-vibration composite environment of typical cabin section structure[J]. Journal of Vibration and Shock, 2024, 43(23): 30-37

参考文献

[1] 夏益霖. 多轴振动环境试验的技术、设备和应用[J]. 导弹与航天运载技术, 1996(06): 38-45.
XIA Yi-lin. The technology, equipment and application of multi-axis vibration environment testing[J]. Missiles and space vehicles, 2006, 40(8): 1143-1145.
[2] 崔旭利,陈怀海,贺旭东,等.MIMO随机振动试验频响估计中激励和响应的同步方法[J].振动与冲击,2012,31(03):92-96.
CUI Xu-li, CHENHuai-hai, HE Xu-dong,et al.Synchronization between excitation and response signals in frequency response function estimation for MIMO random vibration test[J]. Journal of vibration and shock, 2012, 31(03): 92-96.
[3] 马蕾, 王营营, 冯蕾,等. 卫星结构单轴与多轴正弦振动试验技术[J].南京理工大学学报, 2020, 44(04): 409-415.
MALei, WANGYing-ying, FENGlei,et al.Research on single-axis and multi-axis sinusoidal vibration tests of satellite structure[J]. Journal of Nanjing University of Science and Technology, 2020, 44(04): 409-415.
[4] Bai J, Qiu Y, Li J, et al. An equivalent shape-preserving clipping method for the control spectrum to avoid over-testing of triaxial random vibration[J]. Journal of Sound and Vibration, 2021, 501: 116060.
[5] 张魏静, 刘占一, 刘计武,等.液体火箭发动机组件热真空虚拟试验技术[J]. 火箭推进, 2021, 47(04): 64-70.
ZHANGWei-jing, LIU Zhan-yi, LIUJi-wu,et al.Virtual thermal vacuum test technology of liquid-propellant rocket engine components[J]. Journal of rocketpropulsion, 2021, 47(04): 64-70.
[6] 何西波, 王则力, 王智勇. 虚拟试验技术在结构热试验中的应用[J]. 强度与环境, 2016, 43(01): 60-64.
HEXi-bo, WANG Ze-li, WANG Zhi-yong. The application of virtual test technology in thermal test [J]. Structure and environment engineering, 2016, 43(01): 60-64.
[7] Xing H J, Zhang L F, Liang Y, et al. Distribution of radiation heat flux on a plane receiver produced by a multi-quartz lamps heating system for thermal-structural tests[J]. Case Studies in Thermal Engineering, 2023, 49: 103314.
[8] 苏华昌, 骞永博, 李增文, 等. 舵面热模态试验技术研究[J].强度与环境, 2011, 38(5): 18-24.
SU Hua-chang, QIANYong-bo, LI Zeng-wen,et al.The study of rudder thermo-modal test technique [J]. Structure and environment engineering, 2011, 38(5): 18-24.
[9] Gao Y, Wang Y, Xiao D. Experimental investigations of thermal modal parameters for a C/SiC structure under 1600° C high temperature environment[J]. Measurement, 2020, 151: 107094.
[10] Bai Y, Yu K, Zhao R, et al. Impact series shaker excitation approach for structural modal testing in thermal environments[J]. Experimental Techniques, 2018, 42: 429-438.
[11] Bai Y, Yu K, Zhao J, et al. Experimental and simulation investigation of temperature effects on modal characteristics of composite honeycomb structure[J]. Composite Structures, 2018, 201: 816-827.
[12] Lopez-Alba E, Sebastian C M, Silva A C S, et al. Experimental study of mode shifting in an asymmetrically heated rectangular plate[J]. Journal of Sound and Vibration, 2019, 439: 241-250.
[13] 吴大方, 赵寿根, 潘兵, 等. 高速飞行器中空翼结构高温热振动特性试验研究[J].力学学报, 2013, 45(4): 598-605.
WUDa-fang, ZHAOShou-gen, PanBing,et al. Experimental study on high temperature thermal-vibration characteristics for hollow wing structure of high-speed flight vehicles [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 598-605.
[14] 刘浩,李晓东,杨文岐等.考虑气动加热的翼面结构热模态试验方法研究[J].振动与冲击,2015,34(13):101-108.
LIU Hao, LIXiao-dong, YANG Wen-qi,et al. Thermal modal test method for a wing structure considering aerodynamic heating [J]. Journal of vibration and shock, 2015, 34(13): 101-108.
[15] 于开平,郑博文,陈晓岚,等.C/SiC箱型结构的热模态试验研究[J].振动与冲击,2020,39(18):209-214.
YU Kai-ping, ZHENGBo-wen, CHENXiao-lan,et al.Thermal modal test of a C/SiC box structure [J]. Journal of vibration and shock, 2020, 39(18): 209-214.
[16] 王宏宏, 陈怀海, 崔旭利, 等. 热效应对导弹翼面固有振动特性的影响[J]. 振动.测试与诊断, 2010,(03): 275-279.
WANG Hong-hong, CHENHuai-hai, CUIXu-li,et al.Thermal effect on dynamic characteristics of a missile wing [J]. Journal of vibration, measurement and diagnosis, 2010,(03): 275-279.
[17] 王宏宏. 热效应对结构固有振动特性影响研究[D].南京:南京航空航天大学, 2009.
WANG Hong-hong. Thermal effect on the dynamic characteristics of structures [D]. Nanjing: Nanjing university of aeronautics and astronautics, 2009
[18] 崔嵩, 贺旭东, 陈怀海. 一种热模态试验技术的研究. 振动.测试与诊断, 2013,(S2): 21-24.
CUIsong, HEXu-dong, CHENHuai-hai.Test method research on thermal modal analysis [J]. Journal of vibration, measurement and diagnosis, 2013,(S2): 21-24.
[19] Ma H, Tan Z, Chen Q, et al. Output-only identification of time-varying structural modal parameters under thermal environment[C]//Structures. Elsevier, 2024, 63: 106338.
[20] Rubinstein R Y, Kroese D P. Simulation and the Monte Carlo method[M]. John Wiley & Sons, 2016.

PDF(2938 KB)

170

Accesses

0

Citation

Detail

段落导航
相关文章

/