基于稀疏测量的梁结构控制方程系数估计研究

李志鹏, 何毅, 晏致涛

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 312-320.

PDF(3105 KB)
PDF(3105 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 312-320.
论文

基于稀疏测量的梁结构控制方程系数估计研究

  • 李志鹏,何毅,晏致涛
作者信息 +

Coefficient estimation of a beam structure governing equation based on sparse measurements

  • LI Zhipeng, HE Yi, YAN Zhitao
Author information +
文章历史 +

摘要

梁的控制微分方程在工程中有广泛的应用。本文提出了一种使用稀疏测量的位移估计梁结构控制方程系数的方法。首先使用压缩感知理论,由少量位移传感器测量的响应重构梁的全场位移。然后使用B-样条曲面基函数来拟合重构的位移场,获得的控制点将用于计算位移场的偏导数。最后将位移场偏导数代入控制方程,并通过遗传算法确定控制方程的系数。对所提方法的有效性进行了数值和实验验证,并通过参数研究考察了其性能。结果表明该方法具有所需传感器少,高阶导数计算稳健等优势。

Abstract

The governing differential equations of beams have many engineering applications. This study proposes a method to identify the coefficients of the governing equation from sparsely measured displacement responses. First, the full-field displacement is reconstructed by the compressive sensing theory. The reconstructed displacement field is then fitted by B-spline surface basis functions, and the derived control points are further used to calculate other responses, which are derivatives of displacement. The genetic algorithm is finally utilized to seek the coefficients of the governing equation by substituting the fitted responses into the equation. The proposed method is both numerically and experimentally validated, together with a parametric study to evaluate its performance under various conditions. The salient advantages of the proposed method are that it requires only few sensors for measurement and the derivatives are calculated in a robust and easy way.

关键词

全场响应 / 压缩传感 / B-样条基函数 / / 控制微分方程

Key words

Full-filed response / compressive sensing / B-spline basis functions / beam / governing differential equations

引用本文

导出引用
李志鹏, 何毅, 晏致涛. 基于稀疏测量的梁结构控制方程系数估计研究[J]. 振动与冲击, 2024, 43(23): 312-320
LI Zhipeng, HE Yi, YAN Zhitao. Coefficient estimation of a beam structure governing equation based on sparse measurements[J]. Journal of Vibration and Shock, 2024, 43(23): 312-320

参考文献

[1] Ereiz S, Duvnjak I, Fernando Jiménez-Alonso J. Review of finite element model updating methods for structural applications[J]. Structures, 2022, 41: 684-723.
[2] Steven B L, Joshua L P, Kutz J N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems[J]. Proceedings of the National Academy of Science, 2016, 113(15): 3932-3937.
[3] Hao X, Zhang D X, Wang N Z. Deep-learning based discovery of partial differential equations in integral form from sparse and noisy data[J]. Journal of Computational Physics, 2021, 445: 110592.
[4] Samuel H R, Steven L B, Joshua L P, et al. Data-driven discovery of partial differential equations[J]. Science Advances, 2017, 3(4): e1602614.
[5] Bao Y Q, Shi Z Q, Wang X Y, et al. Compressive sensing of wireless sensors based on group sparse optimization for structural health monitoring[J]. Structural Health Monitoring, 2017, 17(4): 823-836.
[6] Li Y X, Huang H W, Zhang W, et al. Structural full-field responses reconstruction by the SVD and pseudo-inverse operator-estimated force with two-degree multi-scale models[J]. Engineering Structures, 2021, 249: 112986.
[7] 叶肖伟, 董传智. 基于计算机视觉的结构位移监测综述[J]. 中国公路学报, 2019, 32(11): 21-39.
Ye Xiaowei, Dong Chuanzhi. Review of computer vision-based structural displacement monitoring [J]. China Journal of
Highway and Transport, 2019, 32(11): 21-39
[8] Yang Y C, Sun P, Nagarajaiah S, et al. Full-field, high-spatial-resolution detection of local structural damage from low-resolution random strain field measurements[J]. Journal of Sound and Vibration, 2017, 399: 75-85.
[9] He Y, Yang J P, Yan Z T. Enhanced identification of bridge modal parameters using contact residuals from three-connected vehicles: Theoretical study[J]. Structures, 2023, 54: 1320-1335.
[10] He Y, Yan Z T, Yang J P. A general approach to construct full-field responses and high-resolution mode shapes of bridges from sparse measurements[J]. International Journal of Structural Stability and Dynamics, 2023, https://doi.org/10.1142/S0219455424710056.
[11] Zhang H Y, Xue S C, Huang Y, et al. Towards probabilistic robust and sparsity-free compressive sampling in civil engineering: A review[J]. International Journal of Structural Stability and Dynamics, 2023, 23(16-18): 2340028.
[12] 温江涛, 孙洁娣, 于洋等. 基于小波包字典优化的旋转机械振动信号压缩感知重构方法[J]. 振动与冲击, 2018, 37(22): 164-172.
Wen Jiangtao, Sun Jiedi, YU Yang, et al. Compressed Sensing reconstruction forrotating machinery vibration signals based on the wavelet packet dictionary optimization [J], Journal of Vibration and Shock, 2018, 32(22): 164-172
[13] Kim S-J, Koh K, Lustig M, et al. An interior-point method for large-scale L1 regularized least squares [J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 606-617.
[14] Piegl L, Tiller W. The NURBS book[M]. Springer, 1995.
[15] Clough R W, Penzien J. Dynamics of structures[M]. Third Edition. Berkeley, Computers & Structures, Inc., 2003.
[16] Sivanandam S N, Deepa S N. Introduction to genetic algorithms[M]. Springer, 2007.
[17] Han Z R, Chang K C, Kim CW. data_moving_vehicle_tests_on_model_bridge, Mendeley Data, 2021, https://data.mendeley.com/datasets/3srffc36dz. 

PDF(3105 KB)

Accesses

Citation

Detail

段落导航
相关文章

/