SSD联合邻域伪标签的无源域旋转机械迁移诊断研究

杨汶金1, 2, 刘韬1, 2, 王振亚1, 2, 王贵勇3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 329-336.

PDF(2226 KB)
PDF(2226 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 329-336.
论文

SSD联合邻域伪标签的无源域旋转机械迁移诊断研究

  • 杨汶金1,2,刘韬1,2,王振亚1,2,王贵勇3
作者信息 +

SSD joint neighborhood pseudo-label source-free domain rotating machinery transfer diagnosis

  • YANG Wenjin1,2, LIU Tao1,2, WANG Zhenya1,2, WANG Guiyong3
Author information +
文章历史 +

摘要

针对迁移诊断中存在的源域和目标域分布差异导致的负迁移以及过分依赖源域样本带来的数据隐私问题,提出一种利用邻域信息优化伪标签监督训练的无源域自适应(Source-free domain adaptation, SFDA)迁移诊断方法以实现在无源域样本情况下的迁移诊断。首先,通过奇异谱分解(Singular spectrum decomposition, SSD)方法对数据进行降噪处理,使得样本具有更丰富的故障信息,然后,基于一维卷积神经网络构建特征提取器以提取域不变特征;其次,采用对比学习框架拉近同一类样本特征,利用聚合邻域信息精炼后的伪标签进行自监督学习;最后,基于智能诊断模型完成跨设备变工况下滚动轴承健康状态的识别。通过两个滚动轴承数据集间的跨设备迁移诊断验证所提方法的有效性。实验结果表明:所提方法能够充分挖掘不同设备间故障特征信息,提高无源无监督跨域条件下的迁移诊断精度。

Abstract

In response to the challenges posed by distributional differences between the source and target domains leading to negative transfer in transfer diagnostics, as well as the data privacy concerns stemming from excessive reliance on source domain samples, this paper proposes a Source-free Domain Adaptation (SFDA) method for transfer diagnostics. This method leverages neighborhood information to optimize pseudo-label supervised training, enabling transfer diagnostics in the absence of source domain samples.Initially, the data undergoes denoising using Singular Spectrum Decomposition (SSD) to enrich the samples with more abundant fault information. Then, a one-dimensional convolutional neural network is employed to construct a feature extractor for extracting domain-invariant features. Subsequently, a contrastive learning framework is applied to bring closer the features of samples from the same class, utilizing refined pseudo-labels derived from the aggregation of neighborhood information for self-supervised learning. Finally, an intelligent diagnostic model is deployed to accomplish the recognition of the health status of rolling bearings under varying operational conditions across different devices. The effectiveness of the proposed method is validated through cross-device transfer diagnostics between two rolling bearing datasets. Experimental results demonstrate that the proposed method effectively uncovers fault feature information across different devices, thereby enhancing transfer diagnostic accuracy under source-free and unsupervised cross-domain conditions.

关键词

无源域自适应 / 伪标签 / 迁移学习 / 故障诊断 / 奇异谱分解

Key words

source-free domain adaptation / pseudo-labels / transfer learning / fault diagnosis / singular spectrum decomposition 

引用本文

导出引用
杨汶金1, 2, 刘韬1, 2, 王振亚1, 2, 王贵勇3. SSD联合邻域伪标签的无源域旋转机械迁移诊断研究[J]. 振动与冲击, 2024, 43(23): 329-336
YANG Wenjin1, 2, LIU Tao1, 2, WANG Zhenya1, 2, WANG Guiyong3. SSD joint neighborhood pseudo-label source-free domain rotating machinery transfer diagnosis[J]. Journal of Vibration and Shock, 2024, 43(23): 329-336

参考文献

[1] MA C Y, LI Y B, WANG X Z, et al. Early fault diagnosis of rotating machinery based on composite zoom permutation entropy[J]. Reliability Engineering & System Safety, 2023, 230:13.
[2] JIA F, LEI Y G, LIN J, et al. Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data[J]. Mechanical Systems and Signal Processing, 2016, 72-73:303-315.
[3] LI X, ZHANG W, DING Q, et al. Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation[J]. Journal of Intelligent Manufacturing, 2020, 31(2):433-452.
[4] HUO Z H, YANG X Y, ZHANG T, et al. Multi-attention Parallel CNN-GRU Fault Diagnosis Method For Rolling Bearing[J]. 2021 CAA Symposium on Fault Detection, Supervision, and Safety for Technical Processes (SAFEPROCESS), 2021:1-6.
[5] JIANG G Q, HE H B, YAN J, et al. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4):3196-3207.
[6] ZHAO M H, KANG M, TANG B P, et al. Deep Residual Networks With Dynamically Weighted Wavelet Coefficients for Fault Diagnosis of Planetary Gearboxes[J]. Ieee Transactions on Industrial Electronics, 2018, 65(5):4290-4300.
[7] XIE J Q, DU G F, SHEN C Q, et al. An End-to-End Model Based on Improved Adaptive Deep Belief Network and Its Application to Bearing Fault Diagnosis[J]. Ieee Access, 2018, 6:63584-63596.
[8] 王振亚,刘韬, 伍星. 互信息规范的卷积神经网络及其在轴承故障特征提取中的应用 [J]. 机械工程学报,2023:1-10.
WANG Zhenya, LIU Tao, WU Xing. Convolutional Neural Network of Mutual Information Specification and its application in bearing fault feature extraction[J]. Journal of Mechanical Engineering, 2023:1-10.
[9] 雷亚国,杨彬,杜兆钧,等. 大数据下机械装备故障的深度迁移诊断方法[J]. 机械工程学报,2019, 55(07):1-8.
LEI Yaguo, YANG Bin, DU Zhaojun, et al. Deep Transfer Diagnosis Method for Machinery in Big Data Era[J]. Journal of Mechanical Engineering, 2019, 55(07):1-8.
[10] 陈祝云,钟琪,黄如意,等. 基于增强迁移卷积神经网络的机械智能故障诊断[J]. 机械工程学报,2021, 57(21):96-105.
CHEN Zhuyun, ZHONG Qi, HUANG Ruyi, et al. Intelligent Fault Diagnosis for Machinery Based on Enhanced Transfer Convolutional Neural Network[J]. Journal of Mechanical Engineering, 2021, 57(21):96-105.
[11] 王军辉,雷文平,刘华杰,等. 基于深度动态域适应的轴承故障诊断研究 [J]. 振动与冲击,2023, 42(14):245-250.
WANG Junhui, LEI Wenping, LIU Huajie, et al. Bearing fault diagnosis based on deep dynamic domain adaptation[J]. Journal of Vibration and Shock, 2023, 42(14):245-250.
[12] 徐易芸,马健,陈良,等. 基于相似性度量迁移学习的轴承故障诊断 [J]. 振动与冲击,2022, 41(16):217-223.
XU Yiyun, MA Jian, CHEN Liang, et al. A bearing fault diagnosis based on similarity measurement for transfer learning[J]. Journal of Vibration and Shock, 2022, 41(16):217-223.
[13] 吴静然,刘建华, 崔冉. 子域适应无监督轴承故障诊断 [J]. 振动与冲击,2021, 40(15):34-40.
WU Jingran, LIU Jianhua, CUI Ran. Sub-domain adaptive unsupervised bearing fault diagnosis[J]. Journal of Vibration and Shock, 2021, 40(15):34-40.
[14] 邵海东,陈星恺,曹鸿儒,等. 内对抗指导无监督多域适配网络的轴承协同故障诊断 [J]. 中国科学:技术科学,2023, 53(07):1229-1240.
SHAO Haidong, CHEN Xingkai, CAO Hongru, et al. Internal adversarial guided unsupervised multi-domain adaptation network for collaborative fault diagnosis of bearing[J]. Science China Technological Sciences, 2023, 53(07):1229-1240.
[15] PFULB B, GEPPERTH A. Overcoming Catastrophic Forgetting with Gaussian Mixture Replay[J]. International Joint Conference on Neural Networks (IJCNN), 2021, 
[16] LITRICO M, DEL B A, MORERIO P, et al. Guiding Pseudo-labels with Uncertainty Estimation for Source-free Unsupervised Domain Adaptation[J]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023:7640-7650.
[17] ZHANG B, LI W, LI X L, et al. Intelligent Fault Diagnosis Under Varying Working Conditions Based on Domain Adaptive Convolutional Neural Networks[J]. Ieee Access, 2018, 6:66367-66384.
[18] YANG S Q, WANG Y X, De Weijer J V, et al. Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation[J]. 35th Conference on Neural Information Processing Systems (NeurIPS), 2021, 34
[19] LIANG J, HU D P, WANG Y B, et al. Source Data-Absent Unsupervised Domain Adaptation Through Hypothesis Transfer and Labeling Transfer[J]. Ieee Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11):8602-8617.

PDF(2226 KB)

Accesses

Citation

Detail

段落导航
相关文章

/