多胞圆管夹芯组合板落锤冲击试验及数值仿真

吴丽丽, 徐翔, 李远, 王慧, 李金鹏

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 38-46.

PDF(3189 KB)
PDF(3189 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 38-46.
论文

多胞圆管夹芯组合板落锤冲击试验及数值仿真

  • 吴丽丽,徐翔,李远,王慧,李金鹏
作者信息 +

Drop hammer impact tests and numerical simulation of multi-cell circular tube sandwich composite panel

  • WU Lili, XU Xiang, LI Yuan, WANG Hui, LI Jinpeng
Author information +
文章历史 +

摘要

为了应对煤矿巷道冲击地压下支架结构破坏严重的问题,本文提出了一种多胞圆管夹芯组合板。该组合板可与煤矿巷道金属支架结合,通过溃缩变形吸能共同抵御冲击荷载。共设计了4个不同芯层厚度夹芯组合板试件的落锤冲击试验,并建立了有限元模型,基于试验验证了该数值模型,开展了多胞圆管夹芯组合板的冲击响应和吸能特性的参数分析。研究结果表明,冲击作用下,多胞圆管夹芯组合板面板呈现圆盘状凹陷,芯层胞体和十字肋发生了褶皱和下陷变形,各个腔室协同工作、相互支撑,并通过塑性变形吸能。同时底部冲击反力的峰值总是滞后且低于落锤冲击荷载峰值,在多次冲击条件下,该组合板也能展现出良好的吸能缓冲效果。多胞圆管夹芯组合板可吸收超过90%的冲击能量,其中65%以上能量由芯层结构吸收。芯层厚度从0.5 mm增加到2.0 mm,芯层部分吸收能量的占比增大了24.17%,相反面板吸能效率递减,减幅为17.17%,芯层厚度减小可降低峰值冲击荷载,芯层厚度为1.0 mm时吸能效果较好。面板厚度对吸能性能影响较小,建议其厚度选择与芯层厚度相近。冲击能量一定情况下,改变落锤重量和冲击速度对结构动力冲击性能和吸能效率的影响很小。

Abstract

To address severe structural damage to support systems under rock bursts in coal mine roadways, this paper proposes a multi-cell circular steel tube sandwich panel. The panel, when combined with metal support structures in coal mine roadways, resists rock bursts through joint collapse deformation and energy absorption. Four sandwich panel specimens with different core thicknesses were designed for drop hammer impact test. Finite element models were established and validated based on experimental data, enabling a parametric analysis of the impact response and energy absorption characteristics of the multi-cell circular steel tube sandwich panels. The study reveals that under impact the multi-cell circular steel tube sandwich panel exhibits a disc-shaped depression, and the core cell and cross ribs undergo wrinkling and sinking deformation. Each chamber works collaboratively, supports each other, and absorbs energy through plastic deformation. At the same time, the peak of the bottom total impact reaction always lags and is lower than the peak impact load of the drop hammer. Under multiple impact conditions, the panel also demonstrates good energy absorption and cushioning effects. The multi-cell circular steel tube sandwich panel can absorb over 90% of the impact energy with over 65% of the energy absorbed by the core Increasing the core thickness from 0.5 mm to 2.0 mm increases the proportion of energy absorbed by the core by 24.17%. Conversely, the panel's energy absorption efficiency decreases by 17.17%, and reducing the core thickness can lower the peak impact load. A core thickness of 1.0 mm shows better energy absorption efficiency. The facesheet thickness has a minor impact on energy absorption performance. It is recommended to choose a thickness close to that of the core. Changing the drop hammer weight and impact velocity has little effect on the structural dynamic impact performance and energy absorption efficiency under a certain impact energy.

关键词

落锤冲击试验 / 多胞圆管夹芯组合板 / 冲击地压 / 煤矿巷道 / 数值模拟

引用本文

导出引用
吴丽丽, 徐翔, 李远, 王慧, 李金鹏. 多胞圆管夹芯组合板落锤冲击试验及数值仿真[J]. 振动与冲击, 2024, 43(23): 38-46
WU Lili, XU Xiang, LI Yuan, WANG Hui, LI Jinpeng. Drop hammer impact tests and numerical simulation of multi-cell circular tube sandwich composite panel[J]. Journal of Vibration and Shock, 2024, 43(23): 38-46

参考文献

[1] 谢和平,鞠杨,高明忠. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报,2018,43(05):1210-1219.
XIE Heiping, JU Yang, GAO Mingzhong. Theories and technologies for in- situ fluidized mining of deep underground coal resources[J].Journal of China Coal Society, 2018, 43(5): 1210-1219.
[2] 袁亮,姜耀东,何学秋. 煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J]. 煤炭学报,2018,43(02):306-318.
YUAN Liang, JIANG Yaodong, HE Xueqiu, et al. Research progress of precise risk accurate identification and monitoring early warning on typical dynamic disasters in coal mine[J]. Journal of China Coal Society, 2018, 43(2): 306-318.
[3] HOU W, ZHU F, LU G, et al. Ballistic impact experiments of metallic sandwich panels with aluminium foam core[J]. International Journal of Impact Engineering, 2010, 37(10): 1045-1055.
[4] VAZIRI A, HUTCHINSON J W. Metal sandwich plates subject to intense air shocks[J]. International Journal of Solids and Structures, 2007, 44(6): 2021-2035.
[5] TILBROOK M T, RADFORD D D, DESHPANDE V S,et al. Dynamic crushing of sandwich panels with prismatic lattice cores[J]. International Journal of Solids and Structures, 2007, 44(18-19): 6101-6123.
[6] RUBINO V, DESHPANDE V S, FLECK N A. The dynamic response of clamped rectangular Y-frame and corrugated core sandwich plates[J]. European Journal of Mechanics - A/Solids, 2009, 28(1): 14-24.
[7] 刘昆,王哲,王自力. 波纹夹层板冲击响应理论计算方法研究[J]. 振动与冲击,2019,38(2):90-97.
LIU Kun, WANG Zhe, WANG Zili. Theoretical calculation method for the impact responses of corrugated sandwich panels[J]. Journal of Vibration and Shock, 2019, 38(2): 90-97.
[8] 张建亮,夏志成,周竞洋. 钢板夹钢管组合板抗低速冲击性能的优化研究[J]. 振动与冲击,2017,36(1):194-200.
ZHAN Jianliang, XIA Zhicheng, ZHOU Jingyang, et al. Optimiz ationanalysis for low velocity impact resistance performance of steel tube sandwich panels[J]. Journal of Vibration and Shock, 2017, 036(001): 194-200.
[9] 夏志成,王曦浩,赵跃堂,等. 钢板夹钢管组合板抗接触爆炸性能研究[J]. 振动与冲击,2017,36(8):149-155.
XIA Zhicheng, WANG Xihao, ZHAO Yuetang, et al. Contact blast resistance of tube-core sandwich panels[J]. Journal of Vibration and Shock, 2017, 36(8): 149-155.
[10] 杨姝,陈鹏宇,江峰,等. 内凹弧形蜂窝夹芯板低速弹道冲击试验与数值仿真[J]. 振动与冲击,2023,42(6):255-262.
YANG Shu, CHEN Pengyu, JIANG Feng, et al. Low-speed ballistic impact test and numerical simulation on re-entrant circular honeycomb sandwich panels[J]. Journal of Vibration and Shock, 2023, 42(6): 255-262.
[11] ZHANG Dahai, JIANG Dong, FEI Qingguo, et al. Experimental and numerical investigation on indentation and energy absorption of a honeycomb sandwich panel under low-velocity impact[J]. Finite Elements in Analysis and Design, 2016, 117-118(C): 21-30.
[12] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures[J]. Journal of Applied Mechanics, 1983, 50(4 a):727-734.
[13] ABRAMOWICZ W. Axial Crushing Multicorner Sheet Metal Columns[J]. Journal of Applied Mechanics, 1989, 56(1):113-120.
[14] 潘一山,肖永惠,李国臻. 巷道防冲液压支架研究及应用[J]. 煤炭学报,2020,45(1):90-99.
PAN Yishan, XIAO Yonghui, LI Guozhen. Roadway hydraulic support for rockburst prevention in coal mine and its application[J]. Journal of China Coal Society, 2020, 45(1): 90-99.
[15] CHEN Weigang, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption[J]. Thin-Walled Structures, 2001, 39(4): 287-306.
[16] ZHANG X, CHENG G. A comparative study of energy absorption characteristics of foam-filled and multi-cell square columns. International[J]. Journal of Impact Engineering, 2007, 34: 1739-1752.
[17] MCGARR BY A, GREEN R W E, SPOTTISWOODE S M. Strong ground motion of mine tremors: some implications for near-source ground motion parameters[J]. Bulletin of the Seismological Society of America, 1981, 71(1): 295-319.
[18] 高明仕,张农,窦林名,等. 基于能量平衡理论的冲击矿压巷道支护参数研究[J]. 中国矿业大学学报,2007,4:426-430.
GAO Mingshi, ZHANG Nong, DOU Linming, et al. Study of Roadway Support Parameters Subjected to Rock Burst Based on Energy Balance Theory[J]. Journal of China University of Mining & T echnology, 2007, 4: 426-430.
[19] 郭然,潘长良,于润沧. 有岩爆倾向硬岩矿床采矿理论与技术[M]. 北京:冶金工业出版社,2003.
[20] GB/T 228.1-2021. 金属材料-拉伸试验[S]. 北京:中国标准出版社,2021.
[21] UNE-EN ISO 26203-2-2012. Metallic materials-Tensile testing at high strain rates-Part 2: Servo-hydraulic and other test systems[S]. Warwick: BSI Standards Publication, 2011.
[22] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]// Proceedings of the seventh international symposium on ballistics. Hague, 1983.

PDF(3189 KB)

Accesses

Citation

Detail

段落导航
相关文章

/