考虑到在嘈杂的噪音环境中,货车滚动轴承的复合故障特征相对模糊,并且各个故障特征之间的相互影响导致了复合故障特征的有效区分困难,提出了基于李雅普诺夫指数(largest lyapunov exponents, LLE)的全变分滤波(total variation filtering,TVF)和加入排列熵(permutation entropy, PE)的多点最优最小熵解卷积(multipoint optimal minimum entropy deconvolution adjusted, MOMEDA)的滚动轴承复合故障诊断方法。首先对复合故障信号进行噪声分析,根据信号存在噪声大小来确定李雅普诺夫指数和信号混沌性,同时将惩罚设置为合适的正则化参数从而实现对复杂环境噪声的自适应降噪,然后通过排列熵改变MOMEDA中的滤波器长度对故障信号进行解卷积运算,分离出不同的故障特征,对信号作傅里叶变换提取故障特征频率,最后利用Teager能量算子(teager energy operator)增强解卷积后的故障冲击信号,实现滚动轴承复合故障的精确判别。通过将此方法应用于仿真信号模拟滚动轴承复合故障以及实际货车轴承复合故障进行验证,结果表明此方法可以实现复合故障特征的准确分离,成功识别出故障类型。
Abstract
Considering that the composite fault characteristics of freight car rolling bearings are relatively fuzzy in noisy environments, and the mutual influence between various fault features makes it difficult to effectively distinguish the composite fault features, a total variation filtering (TVF) based on the largest Lyapunov exponents (LLE) and permutation entropy (PE) are proposed A rolling bearing composite fault diagnosis method based on multi-point optimal minimum entropy deconvolution adjusted (MOMEDA). Firstly, noise analysis is performed on the composite fault signal, and the Lyapunov exponent and signal chaos are determined based on the presence of noise in the signal. At the same time, the penalty is set to appropriate regularization parameters to achieve adaptive noise reduction in complex environments. Then, the fault signal is deconvoluted by changing the filter length in MOMEDA by permutation entropy, and different fault features are separated, Perform Fourier transform on the signal to extract fault characteristic frequencies, and finally use the Teager energy operator to enhance the deconvoluted fault impact signal, achieving accurate discrimination of composite faults in rolling bearings. By applying this method to simulate composite faults of rolling bearings in simulation signals and actual composite faults of freight car bearings, the results show that this method can accurately separate the characteristics of composite faults and successfully identify the types of faults.
关键词
货车轴承;故障诊断;故障监测;特征提取;李雅普诺夫函数 /
{{custom_keyword}} /
Key words
Truck bearings /
Fault diagnosis /
Fault monitoring /
Feature extraction /
Lyapunov function
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MUHAMMAD Y, BONG-HWAN K. Data decomposition techniques with multi-scale permutation entropy calculations for bearing fault diagnosis[J]. Sensors,2018, 18(4): 1278-1295.
[2] LIYJ,ZHANG WH,XIONG Q,et al. A rolling bearing fault diagnosis strategy based on improved multiscale permutation entropy and least squares SVM[J]. Journal of mechanical science and technology,2017,31(6):27112722.
[3] HE S L,CHEN J L,ZHOU Z T,et al. Multifractal entropy based adaptive multiwavelet construction and its application for mechanical compound- fault diagnosis[J]. Mechanical systems and signal processing,2016,76-77: 742-758.
[4] 裴迪,岳建海,焦静.基于自相关与能量算子增强的滚动轴承微弱故障特征提取[J].振动与冲击,2021,40(11):101-108+123.DOI:10.13465/j.cnki.jvs.2021.11.014.
Pei Di, Yue Jianhai, Jiao Jing. Feature extraction of weak faults in rolling bearings based on autocorrelation and energy operator enhancement [J]. Vibration and Shock, 2021,40(11):101-108+123.DOI:10.13465/j.cnki.jvs.2021.11.014
[5] 郭艳平,颜文俊,包哲静,等.基于经验模态分解和散度指标的风力发电机滚动轴承故障诊断方法[J].电力系统保护与控制,2012,40(17):83-88.
GUO Y P,YAN W J,BAO Z J,et al. Fault diagnosis of bearing in wind turbine based on empirical mode decomposition and divergence index[J]. Power system protection and control,2012,40(17):83-88.
[6] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transaction on Signal Processing, 2014, 62(3): 531-544.
[7] ZHANG X, MIAO Q, ZHANG H, et al. A parameter adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery[J]. Mechanical Systems and Signal Processing, 2018, 108: 58-72.
[8] YANX A, JIA M P. Application ofCSA-VMDand optimal
scale morphological slice bispectrum in enhancing outer race fault detection of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2019, 122: 56-86.
[9] 马增强,李亚超,刘政等.基于变分模态分解和Teager能量算子的滚动轴承故障特征提取[J].振动与冲击,2016,35(13):134-139.DOI:10.13465/j.cnki.jvs.2016.13.022.
Ma Qiang, Li Yachao, Liu Zheng, et al. Fault feature extraction of rolling bearings based on variational mode decomposition and Teager energy operator [J]. Vibration and Impact, 2016,35 (13): 134-139. DOI: 10.13465/j.cnki. jvs.2016.13.022.
[10] MCDONALD G L,ZHAO Q,ZUO M J.Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection [J]. Mechanical Systems and Signal Processing,2012,33(1):237-255.
[11] MCDONALD G L,ZHAO Q. Multipoint optimal minimum entropy deconvolution and convolution fix:Application to vibration fault detection[J]. Mechanical systems & signal processing,2017,82:461-477.
[12] 宋宇博,刘运航,朱大鹏.自适应UPEMD-MCKD轴承故障特征提取方法[J].振动与冲击,2023,42(03):83-91.DOI:10.13465/j.cnki.jvs.2023.03.010.
Song Yubo, Liu Yunhang, Zhu Dapeng. Adaptive UPEMD-MCKD bearing fault feature extraction method [J]. Vibration and Impact, 2023,42 (03): 83-91. DOI: 10.13465/j.cnki.jvs.2023.03.010.
[13] 向玲,李京蓄,胡爱军等.基于SK-MOMEDA的风电机组轴承复合故障特征分离提取[J].振动.测试与诊断,2021,41(04):644-651+826.DOI:10.16450/j.cnki.issn.1004-6801.2021.04.002.
Xiang Ling, Li Jingchu, Hu Aijun, et al. Separation and extraction of composite fault characteristics of wind turbine bearings based on SK-MOMEDA [J]. Vibration, Testing and Diagnosis, 2021, 41 (04): 644-651+826. DOI: 10.16450/j.cnki. issn.1004-6801.2021.04.002.
[14] 石佳,黄宇峰,王锋.基于ACMD与改进MOMEDA的滚动轴承故障诊断[J].振动与冲击,2023,42(16):218-226+261.DOI:10.13465/j.cnki.jvs.2023.16.027.
Shi Jia, Huang Yufeng, Wang Feng. Fault diagnosis of rolling bearings based on ACMD and improved MOMEDA [J]. Vibration and Impact, 2023,42 (16): 218-226+261. DOI: 10.13465/j.cnki.jvs.2023.16.027.
[15] 周文杰,周俊,柳小勤,等.AVMD-IMOMEDA在滚动轴承声学复合故障诊断的应用[J].振动与冲击,2023,42(24):152-159.DOI:10.13465/j.cnki.jvs.2023.24.018.
Zhou Wenjie, Zhou Jun, Liu Xiaoqin, etc Application of AVMD-IMOMEDA in Acoustic Composite Fault Diagnosis of Rolling Bearings [J]. Vibration and Shock, 2023,42(24):152-159.DOI:10.13465/j.cnki.jvs.2023.24.018.
[16] Z. Wen, D. Goldfarb and W. Yin, Alternating Direction Augmented Lagrangian Methods for Semidefinite Programming, Mathematical Programming Computation, 2(3-4):203-230, 2010.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}