不同振动条件下水平冷表面上液滴冻结过程数值模拟

陈清华1, 2, 3, 盛恩1, 张斌1, 季家东1, 王建刚1, 3, 刘萍1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 86-93.

PDF(2234 KB)
PDF(2234 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (23) : 86-93.
论文

不同振动条件下水平冷表面上液滴冻结过程数值模拟

  • 陈清华1,2,3,盛恩1,张斌1,季家东1,王建刚1,3,刘萍1
作者信息 +

Numerical simulation of droplet freezing process on horizontal cold surface under different vibration conditions#br#

  • CHEN Qinghua1,2,3, SHENG En1, ZHANG Bin1, JI Jiadong1, WANG Jiangang1,3, LIU Ping1
Author information +
文章历史 +

摘要

液滴冻结作为结霜初期霜层生长的初始开端,对后续霜层生长发挥着关键作用。为研究液滴在振动条件下的冻结规律,通过对水平冷表面添加正弦周期性振动条件进行数值模拟分析,并搭建实验平台进行验证。研究结果发现:振动条件改变了固液相界面形态,缩短了液滴完全冻结时间,其中改变振动频率和振动幅值均会加快液滴冻结;液滴冻结前期,受凝固放热和固相成长影响,测点温度变化呈现先慢后快再趋于平缓的趋势,测点温度平均变化速率与振动频率和振动幅值成正比;液滴冻结过程中,相界面波动程度主要受振动幅值和液滴大小影响,体积恒定时,振动幅值越大,相界面波动程度越明显,相同振动条件下,液滴体积越小,相界面波动程度越明显。

Abstract

Droplet freezing plays a crucial role in the growth of subsequent frost layers as the initial beginning of frost formation. To study the freezing law of liquid droplets under vibration, numerical simulation analysis was conducted by adding sinusoidal periodic vibration conditions to a horizontal cold surface, and an experimental platform was constructed for verification. The research results found that vibration conditions changed the morphology of the solid-liquid interface, shortened the time required for complete freezing of droplets, and changing the vibration frequency and amplitude would accelerate droplet freezing; In the early stage of droplet freezing, due to the influence of solidification heat release and solid phase growth, the temperature change at the measuring point shows a trend of first slow, then fast, and then tends to be gentle. The average rate of temperature change at the measuring point is directly proportional to the vibration frequency and amplitude; During the freezing process of droplets, the fluctuation degree of the phase interface is mainly affected by the vibration amplitude and droplet size. When the volume is constant, the larger the vibration amplitude, the more obvious the fluctuation degree of the phase interface. Under the same vibration conditions, the smaller the droplet volume, the more obvious the fluctuation degree of the phase interface.

关键词

液滴冻结 / 振动条件 / 水平冷表面 / 相界面变化 / 数值模拟

Key words

Droplet freezing / Vibration conditions / horizontal cold surface / Phase interface changes / Numerical simulation

引用本文

导出引用
陈清华1, 2, 3, 盛恩1, 张斌1, 季家东1, 王建刚1, 3, 刘萍1. 不同振动条件下水平冷表面上液滴冻结过程数值模拟[J]. 振动与冲击, 2024, 43(23): 86-93
CHEN Qinghua1, 2, 3, SHENG En1, ZHANG Bin1, JI Jiadong1, WANG Jiangang1, 3, LIU Ping1. Numerical simulation of droplet freezing process on horizontal cold surface under different vibration conditions#br#[J]. Journal of Vibration and Shock, 2024, 43(23): 86-93

参考文献

[1] 赵伟, 梁彩华, 成赛凤, 等. 结霜初期超疏水表面液滴生长的规律[J]. 中南大学学报(自然科学版), 2020, 51(1): 231-238.
ZHAO Wei, LIANG Cai-hua, CHENG Sai-feng, et al. Rule of droplets growth in the early stage of frost formation on superhydrophobic surfaces[J]. Journal of Central South University (Science and Technology), 2020, 51(1): 231-238.
[2] 李丽艳, 刘中良, 赵玲倩, 等. 低温圆截面直肋结霜工况下的传热研究[J]. 工程热物理学报, 2020, 41: 436-442.
LI Li-yan, LIU Zhong-liang, ZHAO Ling-qian, et al. A Study on Heat Transfer of Circular Cross-Section Fins With Cryogenic Fin Base-Temperature under Frosting Conditions[J]. Journal of Engineering Thermophysics, 2020, 41: 436-442.
[3] 陈清华, 张斌, 周保杰, 等. 基于流固热耦合的平直翅片管换热器结霜过程数值模拟[J]. 过程工程学报, 2023, 23(05): 691-702.
CHEN Qin-hua, ZHANG Bin, ZHOU Bao-jie, et al. Numerical simulation of frosting process of flat finned tube heat exchanger based on fluid-solid thermal coupling[J]. The Chinese Journal of Process Engineering, 2023, 23(05): 691-702. 
[4] WU Wei-lan, LUO Jia-en, LI Da-wei , et al. Experimental Investigation of Heat Transfer Performance of a Finned-Tube Heat Exchanger under Frosting Conditions[J]. Sustainable Cities and Society, 2022, 80: 103752. 
[5] HAYASHI Y, AOKI A, ADACHI S, et al. Study of Frost Properties Correlating With Frost Formation Types[J]. Journal of Heat Transfer, 1977, 99(2): 239-245.
[6] NATH S, AHMADI S F, BOREYKO J B. A Review of Condensation Frosting[J]. Nanoscale and Microscale Thermophysical Engineering, 2017, 21(2): 81-101.
[7] 关维娟, 陈清华, 张斌, 等. 振动作用下平直翅片管结霜初期微液滴运动过程数值模拟[J]. 振动与冲击, 2024, 43(8): 155-161.
GUAN Wei-juan, CHEN Qing-hua, ZHANG Bin, et al. Numerical simulation of droplet microdroplet movement in a flat finned tube under vibration[J]. Journal of Vibration and Shock, 2024, 43(8): 155-161.
[8] 任政, 张兴群, 邵致远, 等. 板翅式换热器热通道结霜过程的数值模拟[J]. 西安交通大学学报, 2019, 53(05): 37-42.
REN Zheng, ZHANG Xing-qun, SHAO Zhi-yuan, et al. Numerical Simulation on Frosting Process in Hot Channel of Plate-Fin Heat Exchangers[J]. Journal of Xi’an Jiaotong University, 2019, 53(05): 37-42.
[9] ZHANG Tong-xin, O'NEAL D L, MCCLAIN S T. Analysis of frost thickness and roughness growth from the perspective of frost crystal structure[J]. International Journal of Refrigeration, 2020, 112: 314-323.
[10] 秦妍. 冷表面抑霜机理与调控研究[D]. 辽宁: 大连理工大学, 2021: 1-5.
QIN Yan. Research on the Mechanism of Anti-frosting on Cold Surfaces and Controlling[D]. Liaoning: Dalian University of Technology, 2021: 1-5.
[11] SADD A, XU Minghan, MOHAMMADERFAN M, et al. A comprehensive review of modeling water solidification for droplet freezing applications[J]. Renewable and Sustainable Energy Reviews, 2023, 188: 113768.
[12] YU Feng-jiao, LIU Zhong-liang, LI Yan-xia, et al. Experimental study of water drop freezing process on cryogenic cold surface[J]. International Journal of Refrigeration, 2023, 150: 265-274.
[13] ZHANG Duo, WANG Yuan, YUA Xue-qiang, et al. Freezing modes of water droplet on cold plate surface under forced convection[J]. Applied Thermal Engineering, 2023, 223: 120025.
[14] 田津津, 吴彩霞, 张哲, 等. 钛表面液滴冻结的实验研究[J]. 低温与超导, 2022, 50(2): 71-77.
TIAN Jin-jin, WU Cai-xia, ZHANG Zhe, et al. Experimental study on droplet freezing on titanium surface[J]. Cryogenics and Superconductivity, 2022, 50(2): 71-77.
[15] 赵乾辉, 王洪利, 王绍龙, 等. 基于响应面的铝板表面液滴冻结过程的实验研究[J]. 低温与超导, 2023, 51(3): 20-26.
ZHAO Qian-hui, WANG Hong-li, WANG Shao-long, et al. Experimental study on droplet freezing process on aluminum plate surface based on response surface[J]. Cryogenics and Superconductivity, 2023, 51(3): 20-26.
[16] 张旋, 吴晓敏, 闵敬春. 冷壁上单个静止过冷液滴冻结过程的数值模拟[J]. 工程热物理学报, 2018, 39(1): 159-164.
ZHANG Xuan, WU Xiao-min, MIN Jing-chun. Numerical Simulation of Freezing Process of a Sessile Supercooled Water Droplet on a Cold Wall[J]. Journal of Engineering Thermophysics, 2018, 39(1): 159-164.
[17] 张哲, 吕胜楠, 严雷, 等. 水平铜板表面液滴冻结过程的数值模拟[J]. 化学工程, 2021, 49(3): 66-72.
ZHANG Zhe, LYU Sheng-nan, YAN Lei, et al. Numerical simulation of droplet freezing on horizontal copper plate surface[J]. Chemical Engineering(China), 2021, 49(3): 66-72.
[18] VU T V, DAO K V, PHAM B D. Numerical simulation of the freezing process of a water drop attached to a cold plate[J]. Journal of Mechanical Science and Technology, 2018, 32(5): 2119-2126.
[19] KARLSSON L, LJUNG A L, LUNDSTRÖM T S. Modelling the dynamics of the flow within freezing water droplets[J]. Heat and Mass Transfer, 2018, 54(12): 3761-3769.
[20] 王洪利, 赵乾辉, 梁精龙, 等. 冷壁表面液滴冻结过程的数值模拟[J]. 化学工程, 2023, 51(11): 67-72.
WANG Hong-li, ZHAO Qian-hui, LIANG Jing-long, et al. Numerical simulation of droplet freezing process on cold surfaces[J]. Chemical Engineering(China), 2023, 51(11): 67-72.
[21] 徐志钮, 律方成, 丁傲, 等. 考虑液滴体积的接触角拟合算法[J]. 高电压技术, 2010, 36(06): 1415-1422.
XU Zhi-niu, LYU Fang-cheng, DING Ao, et al. Contact Angle Algorithm Considering Drop Volume[J]. High Voltage Engineering, 2010, 36(06): 1415-1422.
[22] Wong T I, WANG Hao, Wang Fuke, et al. Empirical Formulae in Correlating Droplet Shape and Contact Angle[J]. Australian Journal of Chemistry, 2016, 69(4): 431-439.
[23] 于春放, 靖洪淼, 王仰雪, 等. 顺向正弦来流条件下圆柱气动力和绕流流场数值模拟研究[J]. 振动与冲击, 2024, 43(6): 216-224.
YU Chun-fang, JING Hong-miao, WANG Yang-xue, et al. Numerical study on the aerodynamic forces and flow around a circular cylinder under streamwise sinusoidal inflow condition[J]. Journal of Vibration and Shock, 2024, 43(6): 216-224.

PDF(2234 KB)

137

Accesses

0

Citation

Detail

段落导航
相关文章

/