以航空发动机与船舰燃气轮机为代表的高端透平机械在高效率,大机动飞行等工况要求下,内部结构趋于紧凑化和复杂化,使得内部转静子发生碰摩的概率也随之增加,由于其内部少测点、难监测,往往难以及时准确地发现碰摩故障。本文提出了一种叶尖间隙时频特征融合的转子碰摩故障诊断方法,首先通过叶尖振动-间隙复合传感器获取叶尖间隙(Blade Tip Clearance, BTC)序列,然后通过机器学习算法评估BTC序列的异常性;若有异常警报,则对异常信号进行傅里叶分解并汇总各分量的时频能量谱;最后通过时频能量谱中的碰摩带判断故障的发生。实验结果表明,在对转子施加短时、持续碰摩两种工况后,机器学习模型能够实时诊断,且报警后所提方法能完整分辨出两种碰摩的发生,以及持续碰摩缓慢施加、快速结束的过程。通过与转子振动信号进行对比,表明该方法可通过机匣测点获取叶尖间隙并感知转子碰摩故障,实现了“一传多感”,为透平机械的状态监测和健康管理提供了新的方法。
Abstract
High-end turbomachinery represented by aero-engine and shipboard gas turbine in high efficiency, large maneuvering flight and other working conditions, the internal structure tends to be compact and complex, so that the probability of internal rotor stator rubbing increases, due to the internal less measurement points, difficult to monitor, often difficult to accurately find rubbing faults in a timely manner. In this paper, we propose a rotor rubbing fault diagnosis method by fusing the time-frequency characteristics of the blade tip clearance. Firstly, we obtain the Blade Tip Clearance (BTC) sequence through the blade tip vibration-clearance composite sensor, and then we evaluate the abnormality of the BTC sequence through the machine learning algorithm; if there is an abnormal alarm, we carry out Fourier decomposition of the abnormal signals and summarize the time-frequency energy spectrum of the components. Finally, the occurrence of faults is determined by the rubbing bands in the time-frequency energy spectrum. The experimental results show that the machine learning model is able to diagnose the rotor in real time after applying short-time and continuous rubbing conditions, and the proposed method can completely separate the occurrence of the two types of rubbing and the process of continuous rubbing that is applied slowly and ends quickly after the alarm. Comparison with the rotor vibration signal shows that the method can obtain the BTC and sense rotor rubbing faults through the magazine measuring point, realizing "one sensor and many messages", which provides a new method for the condition monitoring and health management of turbomachinery.
关键词
叶尖感知 /
碰摩故障 /
机器学习 /
傅里叶分解 /
叶尖间隙(BTC)
{{custom_keyword}} /
Key words
blade tip sensing /
rubbing faults /
machine learning /
Fourier decomposition /
blade tip clearance (BTC)
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 马新星, 张振果, 华宏星. 考虑参数非概率不确定性的碰摩转子非线性振动响应分析[J]. 振动与冲击, 2021, 40(18): 56-62.
MA Xin-xing, ZHANG Zhen-guo, HUA Hong-xing. Nonlinear vibration responses of a rubbing rotor considering the non-probabilistic uncertainty of parameters[J]. Journal of Vibration and Shock, 2021, 40(18): 56-62.
[2] LI Y, WEN C, LUO Z, et al. Vibration analysis of a multi-disk bolted joint rotor-bearing system subjected to fixed-point rubbing fault[J]. International Journal of Non-Linear Mechanics, 2022, 146: 104165.
[3] WANG N, LIU C, JIANG D. Experimental analysis of dual-rotor-support-casing system with blade-casing rubbing[J]. Engineering Failure Analysis, 2021, 123: 105306.
[4] LI Y, ZHU Z, WEN C, et al. Rub-impact dynamic analysis of a dual-rotor system with bolted joint structure: Theoretical and experimental investigations[J]. Mechanical Systems and Signal Processing, 2024, 209: 111144.
[5] 太兴宇, 杨树华, 马辉, 等. 叶尖碰摩诱发的转子系统振动响应数值分析与试验研究[J]. 机械工程学报, 2019, 55(19): 112-120.
TAI Xing-yu, YANG Shu-hua, MA Hui, et al. Numerical analysis and experimental investigation of blade tip rubbing-induced vibration responses of rotor system[J]. Journal of Mechanical Engineering, 2019, 55(19): 112-120.
[6] ZENG J, ZHAO C, MA H, et al. Dynamic response characteristics of the shaft-blisk-casing system with blade-tip rubbing fault[J]. Engineering Failure Analysis, 2021, 125: 105406.
[7] 于平超, 陈果, 王存, 等. 碰摩约束下柔性转子模态特性及其计算方法[J]. 航空学报, 2020, 41(12): 256-268.
YU Ping-chao, CHEN Guo, Wang Cun, et al. Modal characteristics and calculation method for flexible rotor system with rubbing constraint[J]. Acta Aeronauticaet Astronautica Sinica. 2020, 41(12): 256-268.
[8] 沈响响, 陈果, 胡伟, 等. 基于叶尖间隙测量的航空发动机转子振动预测[J]. 航空动力学报, 2022, 37(12): 2840-2850.
SHEN Xiang-xiang, CHEN Guo, HU Wei, et al. Vibration prediction of aero-engine rotor based on tip clearance measurement[J]. Journal of Aerospace Power, 2022, 37(12): 2840-2850.
[9] 侯理臻, 廖明夫, 王四季, 等. 航空发动机转子不平衡下转静碰摩实验研究[J]. 振动与冲击, 2019, 38(22): 14-20.
HOU Li-zhen, LIAO Ming-fu, WANG Si-ji, et al. Experimental study on the aero-engine rotor-stator rubbing in imbalance. Journal of Vibration and Shock, 2019, 38(22): 14-20.
[10] RZADKOWSKI. R, ROKICKI. E, PIECHOWSKI. L et al. Analysis of middle bearing failure in rotor jet engine using tip-timing and tip-clearance techniques[J]. Mechanical Systems and Signal Processing, 2016, 76/77: 213-227.
[11] ZHANG L, WANG Q, YUAN H, et al. Blade serial number identification based on blade tip clearance without OPR sensor[J]. Shock and Vibration, 2021, 2021(6): 1-11.
[12] 熊逸伟, 张小栋, 刘洪成, 等. 涡轮叶片裂纹故障的3维叶尖间隙变化特性分析[J]. 航空发动机, 2022, 48(06): 92-97.
XIONG Yi-wei, ZHANG Xiao-dong, LIU Hong-cheng, et al. Analysis of 3D tip clearance variation characteristics for cracked turbine blades[J]. Aeroengine, 2022, 48(06):92-97.
[13] 吴淑明, 陈雪峰, 杨志勃. 转子叶片碰磨故障诊断的叶端定时方法[J]. 航空制造技术, 2022, 65(20): 24-33.
WU Shu-ming, CHEN Xue-feng, YANG Zhi-bo. Rotor blade rubbing fault diagnosis using blade tip timing[J]. Aeronautical Manufacturing Technology, 2022, 65(20): 24-33.
[14] 王维民, 陈子文, 张旭龙, 等. 基于叶端定时的转子碰摩故障诊断方法[J]. 航空学报, 2022, 43(8): 625031-625031.
WANG Wei-min, CHEN Zi-wen, ZHANG Xu-long, et al. Fault diagnosis method of rotor rub impact based on blade tip timing[J]. Acta Aeronauticaet Astronautica Sinica, 2022, 43(8): 625031-625031.
[15] LIU, FEI T, KAI M T, et al. Isolation forest. Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on. IEEE, 2008.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}