圆弧曲梁人行桥阻尼索减振研究

禹见达1, 2, 游琦1, 彭文林1, 谭晓鹏1, 孙洪鑫1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 108-116.

PDF(2170 KB)
PDF(2170 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 108-116.
论文

圆弧曲梁人行桥阻尼索减振研究

  • 禹见达1,2,游琦1,彭文林1,谭晓鹏1,孙洪鑫1,2
作者信息 +

Vibration control of a circular curved beam pedestrian bridge using damping cable

  • YU Jianda1,2,YOU Qi1,PENG Wenlin1,TAN Xiaopeng1,SUN Hongxin1,2
Author information +
文章历史 +

摘要

圆弧曲梁人行天桥在城市桥梁建设中得到了应用,曲线桥梁存在弯、扭耦合而更易在人行激励下发生大幅振动。为降低人行天桥的人致激励响应,本文提出了一种由阻尼器、复位弹簧并联后与主索串联而成的阻尼索装置,进行圆弧曲梁人行桥-阻尼索减振的理论分析与试验研究。首先建立两端固支圆弧曲梁的振动微分方程,采用微分变换法(DTM)获得曲梁面外振动的振型与特征频率,然后采用模态分析法获得阻尼索为曲梁提供的附加阻尼比。制作两端固支半圆弧曲梁模型,实测了阻尼索在不同的安装位置及不同阻尼器粘性系数下曲梁附加阻尼比。研究结果表明:阻尼索提供的圆弧曲梁附加阻尼比的理论分析结果与试验实测结果吻合;阻尼索可以大幅增加圆弧曲梁的附加阻尼比,很好地抑制曲梁的振动。

Abstract

Circular curved beam pedestrian bridges have been applied in urban bridge construction, and curved bridges are more prone to large vibrations under pedestrian excitation due to bending and torsional coupling. In order to reduce the human-induced excitation response of the pedestrian bridge, this paper proposes a damping cable device composed of a damper and a return spring connected in parallel with the main cable, and carries out theoretical analysis and experimental research on the vibration reduction of the circular curved beam pedestrian bridge and the damping cable. Firstly, the differential equation of vibration of the fixed circular curved beam at both ends is established, the mode shape and eigenfrequency of the out-of-plane vibration of the curved beam are obtained by the differential transformation method (DTM), and then the additional damping ratio provided by the damping cable for the curved beam is obtained by the modal analysis method. The model of the curved beam with fixed support at both ends was made, and the additional damping ratio of the curved beam under different installation positions and different viscous coefficients of the damper cable was measured. The results show that the theoretical analysis results of the additional damping ratio of the circular curved beam provided by the damping cable are consistent with the experimental results. The damping cable can greatly increase the additional damping ratio of the circular curved beam, and suppress the vibration of the curved beam well.

关键词

圆弧曲梁 / 人行桥 / 振动控制 / 阻尼索

Key words

Circular curved beam / Pedestrian bridge / Vibration control / Damping cable

引用本文

导出引用
禹见达1, 2, 游琦1, 彭文林1, 谭晓鹏1, 孙洪鑫1, 2. 圆弧曲梁人行桥阻尼索减振研究[J]. 振动与冲击, 2024, 43(24): 108-116
YU Jianda1, 2, YOU Qi1, PENG Wenlin1, TAN Xiaopeng1, SUN Hongxin1, 2. Vibration control of a circular curved beam pedestrian bridge using damping cable[J]. Journal of Vibration and Shock, 2024, 43(24): 108-116

参考文献

[1] 贾布裕,陈扬文,颜全胜等. 人行桥人致横向振动研究综述[J]. 土木工程学报,2023, 56(12): 132-155. 
JIA Buyu, CHEN Yangwen, YAN Quansheng, et al. A rview for pedestrian-induced lateral vibration of footbridges[J]. China Civil Engineering Journal, 2023, 56(12): 132-155. 
[2] 陈政清,刘光栋,人行桥的人致振动理论与动力设计[J]. 工程力学, 2009, 26(S2): 148-159. 
CHEN Zhengqing, LIU Guangdong. Pedestrian-induced vibration theory and dynamic design of footbridges [J].  Engineering Mechanics, 2009, 26(S2): 148-159. 
[3] 徐海军,戎华钦,高星亮,赵彦海. 大跨度曲线人行桥人致振动分析与耦合振动控制研究[J]. 中外公路, 2016, 36(04): 225-230.
XU Haijun, RONG Huaqin, GAO Xingliang, ZHAO Yanhai. Research on human-induced vibration analysis and coupled vibration control of long-span curve pedestrian bridge[J]. Journal of China and Foreign Highway, 2016, 36(04):  225-230.
[4] 罗晓群,张晋,沈昭等. 单斜面索拱支承曲梁人行桥人致振动控制研究[J]. 振动与冲击, 2020, 39(11): 83-92. 
LUO Xiaoqun, ZHANG Jin, SHEN Zhao, et al. Human induced vibration control of curved beam footbridge with single inclined cable arch. Journal of Vibration and Shock, 2020, 39 (11): 83-92.
[5] 李晓玮,何 斌,施卫星. TMD减振系统在人行桥结构中的应用[J]. 土木工程学报, 2013, 46(S1): 245-250.
LI Xiaowei, HE Bin, HI Weixing. Application of TMD seismic vibration control system in the bridge structures[J]. China Civil Engineering Journal, 2013,  46(S1): 245-250.
[6] 陈政清,黄智文,王建辉,牛华伟. 桥梁用TMD的基本要求与电涡流TMD[J]. 湖南大学学报(自然科学版), 2013, 40(08): 6-10. 
CHEN Zhengqing, HUANG Zhiwen, WANG Jianhui,  Niu Huawei. Basic requirements and eddy current TMD for bridges[J]. Journal of Hunan University(Natural Science Edition), 2013, 40(08): 6-10.
[7] 华旭刚,温青,陈政清等.大跨度双层曲线斜拉桥人致振动减振优化与实测验证[J].振动工程学报, 2016, 29(05): 822-830.
HUA Xugang, WEN Qing, CHEN Zhengqing, et al.  Design and experimental validation of structural vibration control of a curved twin-deck cable-stayed bridge subject to pedestrians[J]. Journal of Vibration Engineering, 2016, 29(5): 822-830. 
[8] DALLARD P, FITZPATRICK A, FLINT A, et al. The London millennium footbridge. Structural Engineer, 2001, 79(22): 17~21.
[9] INGÓLFSSON E T. GEORGAKIS C T. JÖNSSON J. Pedestrian induced lateral vibrations of footbridges: A literature review[J]. Engineering Structures, 2012, 45: 21–52.
[10] 伍定一. TMD对钢结构人行天桥的振动控制研究[D].长沙理工大学,2008.
WU Dingyi. Research on vibration control for steel pedestrian bridge applied to TMD[D]. Changsha University of Science and Technology, 2008.
[11] 霍林生,李宏男. 大跨人行过街天桥利用MTMD减振控制的理论分析[J]. 防灾减灾工程学报, 2008(03): 298-302.
HUO Linsheng, LI Hongnan. Theoretical analysis on the use of MTMD vibration reduction control for long-span pedestrian overpass[J]. Journal of Disaster Prevention and Mitigation Engineering, 2008(03): 298-302.
[12] 樊健生,陈宇,聂建国. 人行桥的TMD减振优化设计研究[J]. 工程力学, 2012, 29(09): 133-140+156.
FAN Jiansheng, CHEN Yu, NIE Jianguo. Optimum design of tuned mass damper for footbridge[J]. Engineering Mechanics, 2012, 29(09): 133-140+156.
[13] 樊健生,李泉,聂建国. 人群激励下梁式人行桥振动控制和MTMD优化设计[J]. 土木工程学报, 2010,  43(08): 73-80.
FAN Jiansheng, LI Quan, NIE Jianguo. Crows-induced vibration control of beam footbridge equipped with multiple tuned mass dampers[J]. China Civil Engineering Journal, 2010, 43(08): 73-80.
[14] 沈文爱,曾东鋆,朱宏平. 基于MTMD的大跨度人行悬索桥人致振动控制[J]. 计算力学学报, 2022, 39(02): 178-184.
SHEN Wenai, ZENG Dongjun, ZHU Hongping.  Vibration control on of long-span pedestrian suspension bridge based on MTMD system[J]. Chinese Journal of Computational Mechanics, 2022, 39(02): 178-184.
[15] 温金龙,李 阳,汪志昊等. 基于虚拟激励法的人-桥-MTMD竖向耦合振动分析及其减振优化设计[J/OL].(2023-11-22)[2024-04-07].https:/link.cnki.neturlid/32.1349.TB.20231121.1618.002.
[16] 蔡国平,孙 峰,黄金枝等. MTMD控制结构地震反应的特性研究[J]. 工程力学, 2000(03): 55-59.
Cai Guoping, Sun Feng, Huang Jinzhi, et al.Characteristic analysis of mtmd for seismically excited structures[J]. Engineering Mechanics, 2000(03): 55-59.
[17] BASSOLI E, GAMBARELLI P, VINCENZI L. Human induced vibrations of a curved cable-stayed footbridge[J].  Journal of Constructional Steel Research, 2018, 146: 84-96.
[18] 禹见达,唐伊人,张湘琦等. 复合阻尼索设计及减振性能试验研究[J]. 振动工程学报, 2018, 31(04): 591-598.
YU Jianda, Tang Yiren, ZHANG Xiangqi, et al. Design of composite damping cable and experimental studies on vibration control[J]. Journal of Vibration Engineering, 2018, 31(04): 591- 598.
[19] 彭文林,禹见达,胡磊等. 人行桥阻尼索减振研究[J]. 振动与冲击, 2023, 42(04): 256-262.
PENG Wenlin, YU Jianda, HU Lei, et al. A study on vibration control of a footbridge by damping cables. [J]. Vibration and Shock, 2023, 42(04): 256-262.
[20] 宋郁民,吴定俊,李奇. 圆弧曲梁振动微分方程推导及振动特性分析[J]. 沈阳建筑大学学报(自然科学版), 2012, 28(03): 400-404.
SONG Yumin, WU Dingjun, LI Qi. Derivation of vibration differential equation and analysis of vibration properties arc curved beam[J]. Journal of Shenyang Jianzhu University(Natural Science), 2012, 28(03): 400-404.
[21] 包世华,周坚. 薄壁杆件结构力学[M]. 北京: 中国建筑工业出版社, 2006.
BAO Shihua, ZHOU Jian. Structural mechanics of thin-walled members[M]. Beijing. China Architecture & Building Press, 2006.
[22] 谭敏尧,何洋.基于微分变换法的薄壁箱梁的自由振动分析[J]. 振动与冲击, 2022,41(18): 121-126+142.
TAN Minyao, HE Yang. Free vibration analysis of a thin-walled box girder based on the differential transformation method[J]. Journal of Vibration Engineering, 2022,41(18): 121-126+142.
[23] 禹见达,张湘琦,彭临峰等. 管式电涡流阻尼力的精确测量及阻尼器优化设计[J]. 振动与冲击, 2020, 39(03): 149-15 
YU Jianda, ZHANG xiangqi PENG linfeng, et al. Optimal design of tubular electric eddy damper and its dampingforce’s accurate measurement[J]. Journal of Vibration Engineering, 2020, 39(03): 149-154.

PDF(2170 KB)

166

Accesses

0

Citation

Detail

段落导航
相关文章

/