工业机器人在进行工件抓取过程中,往往存在夹持力过大使工件破损、夹持力过小导致工件滑落的矛盾。为此,提出一种接触滑动的快速检测方法,采用聚偏二氟乙烯(polyvinylidene fluoride, PVDF)压电传感器作为滑觉感知元件。首先,利用阿基米德优化算法(Archimedes Optimization Algorithm, AOA)优化变分模态分解(Variational Mode Decomposition, VMD)对传感器信号进行分解与重构,降低噪声干扰;然后,提取信号的时频域特征,构建信号特征集;最后,使用蜣螂优化算法(Dung Beetle Optimization, DBO)优化选取长短期记忆网络(Long Short-term Memory Networks, LSTM)参数,将DBO优化选取后的参数和信号特征集用于构建滑动检测识别模型。将所提滑动检测方法应用于电动夹爪抓取实验,结果表明,该方法实现了接触状态的精准快速识别,准确率达到100%,识别时间在20ms以内,根据识别结果可实时调整电动夹爪夹持力大小。
Abstract
In the process of grasping workpieces, industrial robots often face the contradiction of excessive gripping force causing damage to the workpiece, and too little gripping force leading to slippage. To address this issue, a rapid sliding detection method is proposed using polyvinylidene fluoride (PVDF) piezoelectric sensors as tactile perception elements. First, the sensor signal is decomposed and reconstructed using the Variational Mode Decomposition (VMD) optimized by the Archimedes Optimization Algorithm (AOA) to reduce noise interference. Next, extract the time-frequency domain features of the signal to construct the signal feature set. Finally, use the Dung Beetle Optimization (DBO) algorithm to optimize the selection of parameters for Long Short-term Memory Networks (LSTM). Apply the optimized parameters obtained from DBO along with the signal feature set to construct the sliding detection recognition model. The proposed sliding detection method was applied to an experiment involving electric gripper grasping. The results demonstrate precise and rapid recognition of contact status, achieving 100% accuracy with recognition times under 20ms. Based on the recognition results, the gripping force of the electric gripper can be adjusted in real-time.
关键词
滑动检测 /
聚偏二氟乙烯 /
阿基米德优化算法 /
变分模态分解 /
长短期记忆网络
{{custom_keyword}} /
Key words
sliding detection, polyvinylidene fluoride, Archimedes optimization algorithm, variational mode decomposition, long short-term memory network /
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] WANG C, LIU C, SHANG F, et al. Tactile Sensing Technology in Bionic Skin: A Review[J]. Biosensors and Bioelectronics, 2023, 220114882-114882.
[2] CHI C, SUN X, XUE N, et al. Recent Progress in Technologies for Tactile Sensors[J]. Sensors, 2018, 18(4): 948.
[3] FORD C, LI H, LLOYD J, et al. Tactile-Driven Gentle Grasping for Human-Robot Collaborative Tasks[C]. 2023 IEEE International Conference on Robotics and Automation (ICRA), London, United Kingdom, 2023.
[4] QU J, MAO B, LI Z, et al. Recent Progress in Advanced Tactile Sensing Technologies for Soft Grippers[J]. Advanced Functional Materials, 2023, 33(41).
[5] 许修箔. 仿人多指灵巧手的抓取规划与实验[D]. 大连: 大连理工大学, 2019.
XU X. Grasp Planning and Experiment of Humanoid Multi-fingered Dexterous hands[D]. Dalian: Dalian University of Technology, 2019.
[6] ABDULRAHMAN A, SITI A A, MOHD K. Slip Detection with Accelerometer and Tactile Sensors in a Robotic Hand Model[C]. 4th International Conference on Electronic Devices, Systems and Applications 2015 (ICEDSA), Kuala Lumpur, Malaysia, 2015.
[7] GREGORIO D, ZANELLA R, PALLI G, et al. Integration of Robotic Vision and Tactile Sensing for Wire-Terminal Insertion Tasks [J]. IEEE Transactions on Automation Science & Engineering, 2019, 16(2): 585-598.
[8] ACCOTO D, SAHAI R, DAMIANI F, et al. A Slip Sensor for Biorobotic Applications Using a Hot Wire Anemometry Approach[J]. Sensors & Actuators A Physical, 2012, 187(none): 201-208.
[9] HUANG C, YANG G, HUANG P, et al. Flexible Pressure Sensor with an Excellent Linear Response in a Broad Detection Range for Human Motion Monitoring[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 3476-3485.
[10] LI R, ZHOU Q, BI Y, et al. Research Progress of Flexible Capacitive Pressure Sensor for Sensitivity Enhancement Approaches [J]. Sensors and Actuators A: Physical, 2021, 321.
[11] ZHANG S, LIU Y, DENG J, et al. Piezo Robotic Hand for Motion Manipulation from Micro to Macro [J]. Nature Communications, 2023, 14(1): 500.
[12] LIN W, WANG B, PENG G, et al. Skin-Inspired Piezoelectric Tactile Sensor Array with Crosstalk-Free Row+Column Electrodes for Spatiotemporally Distinguishing Diverse Stimuli [J]. Advance Science, 2021, 8(3): 2002817.
[13] YANG M, CHENG Y, YUE Y, et al. High-Performance Flexible Pressure Sensor with a Self-Healing Function for Tactile Feedback [J]. Advance Science, 2022, 9(20): 2200507.
[14] CHEN L, ZHENG B, YE J, et al. Cone‐Shaped Electrodes for Capacitive Tactile Sensors with High Sensitivity and Broad Linearity Range [J]. Advanced Materials Technologies, 2023, 8(21).
[15] 王俊博,高国伟.压电式触觉传感器的优化与应用的研究进展[J]. 微纳电子技术, 2023, 60(02): 165-174.
WANG J, GAO G. Research Progress in Optimization and Application of Piezoelectric Tactile Sensors[J]. Micronanoelectronic Technology, 2023, 60(02): 165-174.
[16] 刘玉荣, 向银雪. 基于PVDF的压电触觉传感器的研究进展 [J]. 华南理工大学学报(自然科学版), 2019, 47(10): 1-12.
LIU Y, XIANG Y. Research Progress of Piezoelectric Tactile Sensor Based on PVDF [J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(10): 1-12.
[17] WANG Z, LENG H, LI N, et al. Investigation of Slip Sensing Technology Based on the Conductive Sponge-PVDF [J]. Advanced Materials Technologies, 2022, 7, 2200260.
[18] 刘伟, 丁力平, 翟建军, 等. PVDF薄膜传感器滑动信号的积分简化识别算法 [J]. 机械制造与自动化, 2020, 49(3): 4.
LIU W, DING L, ZHAI J, et al. Integrally Simplified Recognition Algorithm of Sliding Signal of PVDF Thin Film Sensor [J]. Machine Building & Automation, 2020, 49(3): 4.
[19] HASHIM F A, HUSSAIN K, HOUSSEIN E H, et al. Archimedes Optimization Algorithm: a New Metaheuristic Algorithm for Solving Optimization Problems [J]. Applied Intelligence, 2020, 51(3): 1531-51.
[20] DRAGOMIRETSKIY K, ZOSSO D. Variational Mode Decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-44.
[21] 何成兵, 车其祥, 徐振华, 等. 基于参数自寻优变分模态分解的信号降噪方法[J]. 振动与冲击, 2023, 42(19): 283-293.
HE C, CHE Q, XU Z, et al. Signal Denoising Method Based on Parametric Self-optimizing VMD [J]. Journal of Vibration and Shock, 2023, 42(19): 283-293.
[22] XUE J, SHEN B. Dung Beetle Optimizer: a New Meta-heuristic Algorithm for Global Optimization[J]. The Journal of Supercomputing, 2022, 79(7): 7305-7336.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}