针对土中钢板-钢筋混凝土竖井结构受二次爆炸作用下的破坏特征和变形计算问题,基于竖井结构抗一次爆炸试验,开展有限元计算和理论分析。讨论了不同一次、二次爆炸比例爆距情况下竖井结构的破坏特征、一次爆炸工况对二次爆炸后结构变形的影响,提出了一次爆炸后竖井结构抗力衰减评价指标,参数化分析了竖井混凝土强度和钢板厚度对抗力衰减程度的影响规律和机理,构建了二次爆炸作用下竖井结构弹塑性变形计算方法。研究结果表明: ①二次爆炸作用与一次爆炸作用竖井结构破坏模式和破坏特征相同,但一次爆炸会导致结构发生塑性变形和抗力衰减,从而使二次爆炸时竖井结构变形增大,破坏程度加剧;②可以采用结构广义刚度Kstru的衰减程度I表征一次爆炸后竖井结构的抗力变化,衰减程度I与一次爆炸竖井结构无量纲环向相对位移α1相关;③混凝土强度对结构抗力衰减规律影响不大,钢板与混凝土厚度比的增大可以减缓结构抗力的衰减速度;④结合竖井结构一次爆炸弹塑性变形计算方法和结构抗力衰减计算方法得到的二次爆炸作用下竖井结构弹塑性变形半经验计算方法与数值模拟计算结果误差小于8.1%,可以为竖井结构抗爆设计计算和毁伤评估提供依据。
Abstract
In order to study the failure characteristics and deformation calculation of steel plate-reinforced concrete shaft structure in soil under secondary explosion, finite element calculation and theoretical analysis were carried out based on the anti-primary explosion test of shaft structure. The failure characteristics of the shaft structure under different primary and secondary explosion proportional explosion distances and the influence of the primary explosion condition on the structural deformation after the secondary explosion were discussed. The evaluation index of the resistance attenuation of the shaft structure after the primary explosion was proposed. The influence of the strength of the shaft concrete and the thickness of the steel plate on the attenuation degree of the resistance were analyzed, and the calculation method of the elastoplastic deformation of the shaft structure under the secondary explosion was constructed. The following conclusions are obtained: ① The failure mode and failure characteristics of the shaft structure under the secondary explosion are same as those under the primary explosion. However, the primary explosion will lead to plastic deformation and resistance attenuation of the structure, which will increase the deformation and damage degree of the shaft structure under the secondary explosion; ② The attenuation degree I of the generalized stiffness Kstru can be used to characterize the resistance change of the shaft structure after primary explosion. And the attenuation degree I is related to the dimensionless circumferential relative displacement α1 of the shaft structure after an explosion; ③ The strength of concrete has little effect on the attenuation of structural resistance. But the increase of the thickness ratio of steel plate to concrete can slow down the attenuation rate of structural resistance. According to the analysis results, the empirical formula of I was obtained by fitting; ④ The semi-empirical calculation method of elastic-plastic deformation of shaft structure under secondary explosion combined with the calculation method of elastic-plastic deformation of shaft structure under primary explosion and the calculation method of structural resistance attenuation is obtained. The error between the semi-empirical calculation method and the numerical simulation calculation result is less than 8.1 %, which can provide the basis for the anti-explosion design calculation and damage assessment of shaft structure.
关键词
二次爆炸 /
竖井结构 /
破坏特征 /
弹塑性变形
{{custom_keyword}} /
Key words
secondary explosion /
shaft structure /
failure characteristics /
elastic plastic deformation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 崔莹,赵均海,屈展,等. CFRP加固埋地油气管道在爆炸荷载下的损伤判定研究[J]. 振动与冲击,2022, 41(06): 60-69.
CUI Ying, ZHAO Junhai, QU Zhan, et al. Damage assessment of a buried CFRP petroleum pipeline subjected to blast Loading[J]. Journal of vibration and shock, 2022, 41(06):60-69.
[2] 汪维,刘瑞朝,吴飚,等. 爆炸荷载作用下钢筋混凝土梁毁伤判据研究[J]. 兵工学报,2016, 37(08): 1421-1429.
WANG Wei, LIU Ruichao, WU Biao, et al. Damage Criteria of Reinforced Concrete Beams under Blast Loading[J]. Acta Armamentarii, 2016, 37(08): 1421-1429.
[3] 刘扬,赵跃堂,罗昆升,等. 地下箱形结构在爆炸地震波作用下动力响应的解析分析[J]. 振动与冲击,2023, 42(21): 306-315.
LIU Yang, ZHAO Yuetang, LUO Kunsheng, et al. Analytical solution of dynamic response of underground box structure under explosion seismic wave[J]. Journal of vibration and shock, 2023, 42(21): 306-315.
[4] Yu S Y, Wu H X, Zhang G K, et al. Experimental study on anti-shallow-buried-explosion capacity of a corrugated steel-plain concrete composite structure[J]. International Journal of Impact Engineering, 2023, 17: 104393.
[5] Yu S Y, Zhang G K, Wu H X,et al.Experimental study on the elastic-plastic dynamic response of shallow-buried corrugated steel-plain concrete composite structures under long-duration plane blast wave loading[J].Engineering structures, 2023(Jun.15):285.
[6] 马林建,赵 岩,张 晓,等. 二 次 爆 炸 荷 载 作 用 下 钢 筋 混 凝 土 梁 动 力 响 应 分 析 [J]. 工业建 筑,2011, 41(S1): 145-148.
MA Linjian, ZHAO Yan, ZHANG Xiao. Dynamic response analysis of reinforced concrete beams subjected to secondary impulsive loading [J]. Industrial Construction, 2011.
[7] 杨大兴,马林建,马淑娜,等. 常规武器对钢筋混凝土梁二次爆炸效应分析[J].防护工程,2012(06):38-41.
YANG D X, MA L J, MA S N, et al. An analysis of the damage effects of a second conventional weapon explosion on reinforced concrete beams [J]. Protective Engineering, 2012(06): 38-41.
[8] 陈昊,卢浩,孙善政,等. 常规武器二次爆炸作用下浅埋钢筋混凝土拱结构破坏规律[J]. 爆炸与冲击,2023, 43(08): 155-167.
CHEN Hao, LU Hao, SUN Shanzheng, et al. Failure law of shallow buried reinforced concrete arch structure under secondary explosion of conventional weapons[J]. Explosion and Shock Waves, 2023, 43(08): 155-167.
[9] 王桂林,余浩,翟俊,等. 带裂损隧道在爆炸作用下的二次损伤响应规律[J]. 高压物理学报,2023, 37(05): 197-208.
WANG Guilin, YU Hao, ZHAI Jun, et al. Secondary Damage Response of Cracked Tunnels under Explosion[J]. Chinese
Journal of High Pressure Physics, 2023, 37(05): 197-208.
[10] 孙善政,卢浩,陈昊,等. 爆炸作用下土中竖井结构荷载分布规律[J]. 陆军工程大学学报,2023, 2(01): 18-27.
SUN Shanzheng, LU Hao, CHEN Hao, et al. Distribution of Explosion Load on Silo Structure in Soil[J]. Journal of Army Engineering University of PLA, 2023, 2(01): 18-27.
[11] 孙善政,卢浩. 侧向爆炸作用下土中钢-混凝土竖井结构破坏模式研究[J]. 振动与冲击, 2023, 42(14): 64-75.
SUN Shanzheng, LU Hao. Failure mode of a steel-concrete shaft structure in soil under the action of lateral explosion[J].
Journal of vibration and shock, 2023, 42(14): 64-75.
[12] 孙善政,卢浩,熊自明,等. 侧爆作用下土中竖井结构弹塑性变形特征分析及计算[J]. 同济大学学报(自然科学版),2023 ,51(06): 846-857.
SUN Shanzheng, LU Hao, XIONG Ziming, et al. Analysis and Calculation of Elastoplastic Deformation Characteristics of Shaft Structure in Soil Under Side Blast[J]. Journal of Tongji University(Natural Science), 2023, 51(06): 846-857.
[13] FRANK M, MIKE H. Soil modeling for mine blast simulation[C]// 13th International LS-DYNA Conference. Dearborn:[s.n.], 2014.
[14] LEE E, FINGER M, COLLINS W. JWL equation of state coefficients for high explosive: UCID-16189[R]. Livermore: Lawrence Livermore Laboratory,1973.
[15] LEONARD E SCHWER. Modeling Rebar: The Forgotten Sister in Reinforced Concrete Modeling[C]// 13th International LS-DYNA Conference, Dearborn, 2014.
[16] 赵春风,何凯城,卢欣,等. 双钢板混凝土组合板抗爆性能分析[J]. 爆炸与冲击,2021, 41(09): 116-131.
ZHAO Chunfeng, HE Kaicheng, LU Xin, et al. Analysis on the blast resistance of steel concrete composite slab[J]. Explosion and Shock Waves, 2021, 41(09): 116-131.
[17] 徐鑫. 含水率对非饱和粘土动态力学性能影响研究[D]. 长沙: 国防科学技术大学, 2012: 45-47.
XU Xin. Study on Effects of Moisture Content on Dynamic Mechanical Behaviors of Clay[D]. Changsha: National University of Defense Technology, 2012: 45-47.
[18] Li J, Wu C , Hao H , et al. A study of concrete slabs with steel wire mesh reinforcement under close-in explosive loads[J]. International Journal of Impact Engineering, 2017, 110: 242-254.
[19] 叶列平,林旭川,曲哲,等. 基于广义结构刚度的构件重要性评价方法[J]. 建筑科学与工程学报,2010, 27(01): 1-6+20.
YE Lieping, LIN Xuchuan, QU Zhe, et al. Evaluating Method of Element Importance of Structural System Based on Generalized Structural Stiffness[J]. Journal of Architecture and Civil Engineering, 2010, 27(01): 1-6+20.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}