1.School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China;
2.Anhui Jiangnan Blasting Engineering Co., Ltd., Xuancheng 242300, China
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Show less
文章历史+
收稿日期
修回日期
出版日期
2024-04-17
2024-05-28
2024-12-28
发布日期
2024-10-28
摘要
深孔台阶爆破近区振动信号中常含有趋势项和高频噪声导致信号畸变失真,严重影响时频特征分析。针对此问题,构建了自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)算法结合基于广义最小最大非凸( generalized minimax concave,GMC)惩罚项的稀疏降噪法与稀疏化基线估计消噪(baseline estimation and de-noising with sparsity,BEADS)算法的联合预处理方法。通过仿真信号验证该方法的可行性。将其应用于实际深孔台阶爆破近区振动信号的处理,并提取重构信号的时频特征,结果表明:在仿真信号实验中,本文构建的预处理方法能在有效保留信号真实成分的前提下消除高频噪声和低频趋势项的影响,相较于其他5种方法重构信号信噪比更高、均方根误差更小。在实测信号分析中,预处理后信号波形恢复正常,高频噪声成分被抑制,低频段频谱更清晰。时频特征分析发现,深孔台阶爆破近区振动信号主频较低,能量主要集中在25~150Hz范围内,极低频和高频能量占比较少。根据时频特征分析结果结合爆破安全规程对爆破参数设计给出了建议。研究结果对爆破振动信号精确分析及制定爆破振动控制措施具有重要意义。
Abstract
The vibration signals in the near zone of deep-hole bench blasting often contain trend terms and noise components, causing signal distortion and affecting the analysis of time-frequency characteristics. To address this issue, a joint preprocessing method combining ICEEMDAN algorithm, GMC-penalized sparse denoising, and BEADS algorithm is proposed. The feasibility of this method is validated through simulation signals and applied to the processing of actual near-zone vibration signals from deep-hole bench blasting. The time-frequency characteristics of the reconstructed signal are extracted, and the results indicate that the proposed preprocessing method can eliminate the effects of high-frequency noise and low-frequency trend terms while effectively retaining the true components of the signal, achieving a higher signal-to-noise ratio and lower root mean square error compared to five other methods. In the analysis of actual signals, the preprocessed signal waveform is normalized, high-frequency noise is suppressed, and the low-frequency spectrum is clearer. Time-frequency characteristic analysis reveals that the main frequency of near-zone vibration signals from deep-hole bench blasting is low, with energy mainly concentrated in the 25~150 Hz range, and very low and high frequencies having a lesser energy proportion. Recommendations for blast design parameters are made based on the results of time-frequency characteristics analysis and in accordance with blasting safety regulations. This research is significant for precise analysis of blasting vibration signals and for developing vibration control measures.
ZHANG Wentao1, WANG Haibo1, GAO Pengfei1, 2, WANG Mengxiang1, YANG Fan1, 2, L Nao1, ZONG Qi1.
Preprocessing and time-frequency characterization of vibration signals of deep-hole bench blasting in near field[J]. Journal of Vibration and Shock, 2024, 43(24): 178-189
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 童晓玲,曾斐宇,江轲,等.基于CEEMD-MPE-IMPROVED WTD的爆炸振动信号噪声抑制方法[J].振动与冲击,2024,43(01):184-192.
TONG Xiao-ling,ZENG Fei-yu,JIANG Ke,et al. Noise suppression method of explosion vibration signals based on CEEMD-MPE-IMPROVED WTD[J]. Journal of Vibration and Shock,2024,43(01):184-192.
[2] 韩亮,刘殿书,辛崇伟,等.深孔台阶爆破近区振动信号趋势项去除方法[J].爆炸与冲击,2018,38(05):1006-1012.
HAN Liang,LIU Dingshu,XIN Chongwei,et al. Trend
removing methods of vibration signals of deep hole bench blastingin near field[J]. Explosion and Shock Waves,2018,38(05):1006-1012.
[3] 韦啸,高文学,王林台,等.基于EEMD的地铁隧道爆破振动信号分析与应用研究[J].隧道建设(中文),2019,39(08):1293-1300.
WEI Xiaoxiao,GAO Wenwen,WANG Lintai,et al. Analysis and Application of Metro Tunnel Blasting Vibration Signal Based on EEMD[J]. Tunnel Construction,2019,39(08):1293-1300.
[4] 黄智刚,吕虎波,林一庚,等.基于CEEMDAN-MPE算法的隧道爆破地震波信号降噪方法及应用[J].爆破,2020,37(04):138-144.
HUANG Zhigang,LU Hubo,LIN Yigeng,et al. Denoising Method of Tunnel Blasting Seismic Wave Signal based on
CEEMDAN-MPE Algorithm and its Application[J]. Blasting,2020,37(04):138-144.
[5] 闫鹏,张云鹏,田婕,等.基于CEEMDAN-K-means算法
爆破振动信号去噪研究[J].爆破,2023,40(03):184-190.
YAN Peng,ZHANG Yunpeng,TIAN Jie,et al. Blasting Vibration Signal Denoising based on CEEMDAN-K-means
Algorithm[J]. Blasting,2023,40(03):184-190.
[6] 曹焱,赵斌,邢志明,等.基于ICEEMDAN与样本熵的脑血氧信号去噪方法研究[J/OL].电子科技:1-9[2024-04-03].
Cao Yan,Zhao Bin,Xing Zhiming,et al. A Study on the Denoising Method of Cerebral Blood Oxygen Signal Based on
ICEEMDAN and Sample Entropy[J/OL].Electronic Science and Technology:1-9[2024-04-03].
[7] 周红敏,赵事成,赵文清,等.基于改进的MEEMD的隧道掘进爆破振动信号去噪优化分析[J].振动与冲击,2023,42(10):74-81.
ZHOU Hongmin,ZHAO Shicheng,ZHAO Wenqing,et al. Vibration signal denoising optimization analysis in tunnel excavation based on improved MEEMD[J]. Journal of Vibration and Shock,2023,42(10):74-81.
[8] 李启月,王宏伟,王靖博,等.基于EEMD和小波阈值法的爆破振动信号预处理研究[J].矿冶工程,2021,41(03): 28 -31+36.
LI Qiyue,WANG Hongwei,WANG Jingbo et al. Pretreatment of Blasting Vibration Signal Based on EEMD and Wavelet Threshold Method[J]. Mining and Metallurgical Engineering,2021,41(03):28-31+36.
[9] 叶红宇,卓越,杨小林.隧道爆破振动信号EEMD分解后小波包降噪法研究[J].铁道建筑,2018,58(07):83-86.
YE Hongyu, ZHUO Yue, YANG Xiaolin. Research on Wavelet Packet Denoising of Tunnel Blasting Vibration Signals After EEMD Decomposition[J]. Railway Engineering,2018,58(07):83-86.
[10] 李诗楠,凌威,梁竹关,等.基于ICEEMDAN与小波包分解的脉搏信号联合去噪[J].电子测量技术,2022,45(18) : 41-48.
LI Shinan,LING Wei,LIANG Zhuguan,et al. Joint denoising of pulse signals based on ICEEMDAN and wavelet packet decomposition[J]. Electronic Measurement Technology,2022,45(18):41-48.
[11] Jin,Zhongyi,Dong,et al.Sparse ECG Denoising with Generalized Minimax Concave Penalty[J].Sensors, 2019.
[12] 李博文,范赐恩,石文轩等.基于稀疏表示与能量分解的无参考图像质量评价[J].计算机应用研究,2018,35(10) : 3192 -3196+3200.
LI Bowen,FAN Ci'en,SHI Wenxuan et al. No-reference image quality assessment based on sparse representation and
energy splitting[J]. Application Research of Computers,2018,35(10):3192-3196+3200.
[13] 肖凌俊,吕勇,袁锐.MED与GMCP稀疏增强信号分解在滚动轴承故障诊断中的应用[J].机械科学与技术,2020,39(02):165-173.
Xiao Lingjun,Lv Yong,Yuan Rui.Application of MED and GMCP Sparse Enhanced Signal Decomposition in Rolling Bearing Fault Diagnosis[J]. Mechanical Science and Technology for Aerospace Engineering,2020,39(02) : 165 - 173.
[14] Selesnick I W ,Bayram.Enhanced Sparsity by Non-Separable Regularization[J].IEEE Transactions on Signal Processing, 2016, 64(9):2298-2313.
[15] Selesnick I.Sparse regularization via convex analysis [J].IEEE Transactions on Signal Processing,2017,65 (17):4481-4494.
[16] Duval S L .Chromatogram baseline estimation and denoising using sparsity (BEADS)[J].Chemometrics and Intelligent Laboratory Systems, 2014, 139(Null).
[17] 宋青波,柏皓博,王海龙等.基于CEEMDAN-交叉小波变换的爆破延时识别[J].工程爆破,2023,29(02):10-16+24.
SONG Qingbo, BER Haobo, WANG Hailong ,et al. Recognition of blasting delay time based on CEEMDAN-cross wavelet transform[J]. Engineering Blasting,2023,29(02):10-16+24.
[18] 邵骏.基于交叉小波变换的水文多尺度相关分析[J].水力发电学报,2013,32(02):22-26+42.
SHAO Jun. Multi-scale correlation analysis of hydrological time series based on cross wavelet transform[J]. Journal of Hydroelectric Engineering,2013,32(02):22-26+42.
[19] 田婕,张云鹏,闫鹏等.基于CEEMD的露天深孔爆破振动信号降噪光滑模型[J/OL].爆破,1-14[2024-03-21].
TIAN Jie,ZHANG Yunpeng,YAN Peng et al. CEEMD-based Noise Reduction Smooth Model of Open-pit Deep-hole
Blasting Vibration Signal[J/OL]. Blasting,1-14[2024-03-21].
[20] 张军,潘泽鑫,郑玉新等.振动信号趋势项提取方法研究[J].电子学报,2017,45(01):22-28.
ZHANG Jun,PAN Zexin,ZHENG Yuxin et al. Research on Vibration Signal Trend Extraction[J]. Acta Electronica Sinica,2017,45(01):22-28.
[21] 韦晓伟,张洪波,辛琛,等.变化环境下流域气象水文要素的相关性演化[J].南水北调与水利科技(中英文),2020,18(06):17-26.
WEI Xiaowei,ZHANG Hongbo,XIN Chen,et al. Evolution of correlation analysis of hydro-meteorological variables in the basin under changing environment[J]. South-to-North Water Transfers and Water Science Technology,2020,18(06):17-26.
[22] Selesnick I.Sparsity-assisted Isignal smoothing (revisited) [C] //2017IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).IEEE,2017:4546-4550.
[23] 付晓强,俞缙,刘纪峰等.隧道爆破振动信号畸变校正与混沌多重分形特征研究[J].振动与冲击,2022,41(06):76-85.
FU Xiaoqiang, YU Jin, LIU Jifeng et al. Distortion correction and fractal characteristics of vibration signals of a
tunnel blasting[J]. Journal of Vibration and Shock,2022,41(06):76-85.
[24] 何成兵,车其祥,徐振华,等.基于参数自寻优变分模态分解的信号降噪方法[J].振动与冲击,2023,42(19):283-293.
HE Chengbing,CHE Qixiang,XU Zhenhua,et al. Signal denoising method based on parametric self-optimizing VMD[J]. Vibration and Shock,2023,42(19):283-293.
[25] 杨年华,张志毅,王平亮,等.大规模深孔抛掷爆破振动衰减实测与研究[C]//第九届全国工程爆破学术会议.
青岛:中国工程爆破协会;中国力学学会,2008.
[26] 杨年华.不同爆破工程的地震特点分析[J].工程爆破,2014,20(05):1-7+17.
YANG Nianhua. Seismic characteristics analysis of different blasting projects[J]. Engineering Blasting, 2014, 20(05) : 1- 7+17.
[27] 中国国家标准化管理委员会。爆破安全规程:GB6722-2014 [S] .北京:中国标准出版社,2015.
National Standardization Administration of China. Blasting safety regulations: GB6722-2014 [S] . Beijing: China Standard Press, 2015.
[28] 满轲,刘晓丽.周边空孔效应对爆破振速及围岩损伤的影响研究[J].工程力学,2020,37(11):127-134+184.
Man Ke, Liu Xiaoli. Study on the influence of peripheral empty hole effect on blasting vibration rate and surrounding rock damage[J].Engineering Mechanics,2020,37(11):127-134+184.