基于SV波斜入射水平非一致场管廊动力响应研究

黄德龙1, 王惠跃1, 岑航1, 宗钟凌1, 刘强2, 汤爱平3, 陶夏新3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 190-203.

PDF(5735 KB)
PDF(5735 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 190-203.
论文

基于SV波斜入射水平非一致场管廊动力响应研究

  • 黄德龙1,王惠跃1,岑航1,宗钟凌1,刘强2,汤爱平3,陶夏新3
作者信息 +

A study on dynamic response of a utility tunnel in horizontal non-homogeneous site based on SV wave oblique incidence

  • HUANG Delong1,WANG Huiyue1,CEN Hang1,ZONG Zhongling1,LIU Qiang2,TANG Aiping3,TAO Xiaxin3
Author information +
文章历史 +

摘要

水平非均匀场会对管廊抗震产生不利影响,并且斜入射地震波对地下结构的破坏更为严重。为了解决这些问题,本文基于粘弹性人工边界,推导并验证了水平非一致场等效结点公式。然后,建立管廊及周围土体三维有限元模型,获得了管廊在地震作用下的加速度、土压力增量、位移和应变响应。探究了水平非均匀场垂直剪切波(SV波)作用下不同入射角度对管廊响应的影响规律,包括加速度、土压力增量、管廊-土体相对滑移和管廊应变。研究发现PGA(peak ground acceleration)从0.1g到0.4g,相同入射角度下,PGA为0.1g与0.4g管廊峰值加速度响应差值接近50%,说明入射角度对较大PGA敏感;最大管廊-土体相对位移与入射角度的关系不受PGA的影响;粘土区相对位移与应变围合的面积更大,总体平均耗能比砂土区大63.2%。本文的研究结果可为水平非均匀场管廊抗震设计提供参考。

Abstract

Horizontal non-homogeneous site will adversely affect the seismic resistance of the utility tunnel, and the damage of obliquely incident seismic waves to the underground structure is more serious. In order to solve these problems, this paper derives and verifies the horizontal non-homogeneous site equivalent node formula based on the viscous-spring artificial boundary. Then, a three-dimensional finite element model of the utility tunnel and the surrounding soil body is established, and the acceleration, soil pressure increment, displacement and strain responses of the utility tunnel under seismic action are obtained. The influence laws of different incident angles on the response of the utility tunnel under the action of horizontal non-homogeneous site vertical shear wave (SV wave), including acceleration, soil pressure increment, relative slip of the utility tunnel-soil body, and strain of the utility tunnel, are investigated. It is found that the PGA ranges from 0.1g to 0.4g, and the difference between the maximum acceleration response of the utility tunnel with a PGA of 0.1g and 0.4g under the same incidence angle is close to 50%, which indicates that the incidence angle is sensitive to the larger PGA; the relationship between the maximum utility tunnel-soil relative displacement and the incidence angle is not affected by the PGA; the relative displacement and strain enclosing the clay zone is larger, and the overall average energy dissipation is larger than that of the sand zone by 63.2%. The results of this paper can provide a reference for the seismic design of horizontal non-homogeneous site utility tunnels.

关键词

综合管廊 / SV波斜入射 / 水平非均匀场 / 等效地震荷载 / 管廊-土体相对位移 / 应变响应

Key words

Utility tunnel / SV wave oblique incidence / Horizontal non-homogeneous site / Equivalent seismic force / Relative slippage of utility tunnel -soil / Strain response

引用本文

导出引用
黄德龙1, 王惠跃1, 岑航1, 宗钟凌1, 刘强2, 汤爱平3, 陶夏新3. 基于SV波斜入射水平非一致场管廊动力响应研究[J]. 振动与冲击, 2024, 43(24): 190-203
HUANG Delong1, WANG Huiyue1, CEN Hang1, ZONG Zhongling1, LIU Qiang2, TANG Aiping3, TAO Xiaxin3. A study on dynamic response of a utility tunnel in horizontal non-homogeneous site based on SV wave oblique incidence[J]. Journal of Vibration and Shock, 2024, 43(24): 190-203

参考文献

[1] 李金奎, 汪洋. 地下综合管廊地震响应研究进展 [J] . 科学技术与工程, 2021, 21(9): 3428-3445. 
LI Jinkui, WANG Yang. Research progress of seismic response of underground utility tunnel [J]. Science Technology and Engineering, 2021, 21(9): 3428-3445. (in Chinese) 
[2] Yue F, Liu B W, Zhu B, et al. Shaking table investigations on seismic performance of prefabricated corrugated steel utility tunnels [J]. Tunnelling and Underground Space Technology, 2020, 105: 103579. 
[3] 黄博, 李琪群, 凌道盛, 等. SV波斜入射形成的动应力路径及影响因素分析 [J]. 振动与冲击, 2018, 37(2): 6-16, 42. 
HUANG Bo, LI Qiqun, LING Daosheng, et al. Analysis of dynamic stress path due to oblique incidence of SV-waves and its influencing factors [J]. Journal of Vibration and Shock,2018,37(2): 6-16, 42.
[4] GB 18306 - 2001 中国地震动参数区划 [S]. 北京: 中国标准版社, 2015.
GB 18306-2001 China ground motion parameter regionalization [S]. Beijing: China Standard Edition, 2015.
[5] 杨澄宇, 蔡雪松, 袁勇. 地铁车站钢筋混凝土中柱试件抗震混合试验研究 [J]. 振动与冲击, 2020, 39(15): 126-132, 141.
YANG Chengyu, CAI Xuesong, YUAN Yong. Experimental study on Seismic mixed Test of reinforced concrete Middle column specimens in Subway Station [J]. Vibration and shock, 2020, 39 (15): 126,132141.
[6] 杜修力, 康凯丽, 许紫刚, 等. 地下结构地震反应的主要特征及规律 [J].土木工程学报, 2018, 51(7): 11-21.
DU Xiuli, KANG Kaili, XU Zigang, et al. Main characteristics and laws of seismic response of underground structures [J]. Journal of Civil Engineering, 51(7): 11-21.
[7] 王振强, 冯立, 陈志雄, 等. 单舱地下综合管廊地震动力响应振动台模型试验 [J]. 科学技术与工程, 2020, 20(6): 2397-2404.
WANG Zhenqiang, FENG Li, CHEN Zhixiong, et al. Shaking table model test study on seismic dynamic response of single cabin underground utility tunnel [J]. Science Technology and Engineering, 2020, 20 (6): 2397-2404.
[8] 陈卫忠, 宋万鹏, 赵武胜, 等. 地下工程抗震分析方法及性能评价研究进展 [J]. 岩石力学与工程学报, 2017, 36 (2): 310-325.
CHENG Weizhong, SONG Wanpeng, ZHAO Wusheng, et al. Research progress of seismic analysis methods and performance evaluation of underground engineering [J]. Journal of Rock Mechanics and Engineering, 2017, 36(2): 310-325.
[9] 刘晶波, 谭辉, 宝鑫, 等. 土–结构动力相互作用分析中基于人工边界子结构的地震波动输入方法 [J]. 力学学报, 2018, 50(01): 32-43.
LIU Jingbo, TAN Hui, BAO Xin, et al. Seismic fluctuation input method based on artificial boundary substructure in soil-structure dynamic interaction analysis [J]. Journal of Mechanics, 2018, 50(01): 32-43.
[10] 刘晶波, 谭辉, 王东洋, 等. 土-结构动力相互作用问题分析中地震动输入的一种新方法 [J]. 地震工程学报, 2019, 41(01): 1-8.
LIU Jingbo, TAN Hui, WANG Dongyang, et al. A new method of ground vibration input in the analysis of soil-structure dynamic interaction problems [J]. Journal of Earthquake Engineering, 2019, 41(01): 1-8.
[11] 刘晶波, 宝鑫, 谭辉, 等. 土-结构动力相互作用分析中基于内部子结构的地震波动输入方法 [J]. 土木工程学报, 2020, 53 (08): 87-96.
LIU Jingbo, BAO Xin, TAN Hui, et al. Seismic fluctuation input method based on internal substructure in soil-structure dynamic interaction analysis [J]. Journal of Civil Engineering, 2020, 53 (08): 87-96.
[12] 李述涛, 刘晶波, 宝鑫, 等. 人工边界子结构地震动输入方法在ABAQUS中的实现 [J]. 自然灾害学报, 2020, 29(04): 133-141.
LI Shuitao, LIU Jingbo, BAO Xin, et al. Implementation of artificial boundary substructure ground vibration input method in ABAQUS [J]. Journal of Natural Hazards, 2020, 29(04): 133-141.
[13] 何卫平, 杜修力, 陈平, 等. 基于场址复杂入射波场的非一致波动输入模型 [J/OL]. (2023-02-27)[2024-04-15].https://kns.cnki.net/kcms/detail//11.2595.o3.20230224.1709.017.html.
[14] 史晓军, 陈隽, 李杰. 非一致地震激励地下综合管廊振动台模型试验研究(Ⅰ)—试验方法 [J]. 地震工程与工程振动, 2010, 30(01): 147-154.
SHI Xiaojun, CHEN Jun, LI Jie. Experimental study on shaking table model of underground utility tunnel with non-homogeneous seismic excitation (Ⅰ)-test method [J]. Earthquake Engineering and Engineering Vibration, 2010, 30(01): 147-154.
[15] 陈隽, 史晓军, 李杰. 非一致地震激励地下综合管廊振动台模型试验研究(Ⅱ)—试验结果 [J]. 地震工程与工程振动, 2010, 30(02): 123-130.
CHEN Jun, SHI Xiaojun, LI Jie. Experimental study on shaking table model of underground utility tunnel with non-homogeneous seismic excitation (Ⅱ)-test results [J]. Earthquake Engineering and Engineering Vibration, 2010, 30(02): 123-130.
[16] 蒋录珍, 陈隽, 李杰. 非一致地震激励地下综合管廊振动台模型试验研究(Ⅲ)—数值模拟 [J]. 地震工程与工程振动, 2010, 30(03): 45-52.
JIANG Luzhen, CHEN Jun, LI Jie. Experimental study on shaking table model of underground utility tunnel with non-homogeneous seismic excitation (Ⅲ)-numerical simulation [J]. Earthquake Engineering and Engineering Vibration, 2010, 30(03): 45-52.
[17] 岳庆霞, 李杰. 非一致随机地震激励下综合管廊响应分析 [J].武汉理工大学学报, 2010, 32(09): 133-136.
YUE Qingxia, LI Jie. Response analysis of utility tunnel under non-homogeneous random seismic excitation [J]. Journal of Wuhan University of Technology, 2010, 32(09): 133-136.
[18] 仉文岗, 韩亮, 陈志雄, 等 双仓综合管廊抗震性能模型试验研究 [J]. 岩土工程学报, 2020, 42(1): 1-9.
JI Wengang, HAN Liang, CHEN Zhixiong, et al. Experimental study on seismic performance modeling of double-compartment utility tunnel [J]. Journal of Geotechnical Engineering, 2020, 42(1): 1-9.
[19] Huang D L, Zong Z L, Tao X X, et al. Seismic response of utility tunnel in horizontal non-homogeneous site based on improved discrete element method [J]. Structures, 2023, 57: 105179. 
[20] 黄德龙, 宗钟凌, 汤爱平, 等. 穿越非均匀土体综合管廊振动台试验研究 [J/OL].(2022-11-01)[2024-04-15].https://kns.cnki.net/kcms/detail/11.2595.O3.20221031.1545.016.html.
[21] Huang D L, Zong Z L, Tang A P, et al. Dynamic response and vibration isolation of pipes inside a utility tunnel passing through non-homogeneous soil under seismic action [J]. Soil Dynamics and Earthquake Engineering, 2022, 163: 107522.
[22] Abate G, Massimino M R. Parametric analysis of the seismic response of coupled tunnel–soil–aboveground building systems by numerical modelling [J]. Bulletin of Earthquake Engineering, 2017, 15: 443-467.
[23] 黄景琦, 杜修力, 田志敏, 等. 斜入射SV波对地铁车站地震响应的影响 [J]. 工程力学, 2014, 31 (09): 81-88+103.
HUANG Jingqi, DU Xiuli, TIAN Zhimin, et al. Effects of obliquely incident SV waves on seismic response of subway stations [J]. Engineering Mechanics, 2014, 31 (09): 81-88+103.
[14] Huang J Q, Zhao M, Du X L. Non-linear seismic responses of tunnels within normal fault ground under obliquely incident P waves [J]. Tunnelling and Underground Space Technology, 2017, 61: 26-39.
[25] Huang J Q, Zhao X, Zhao M, et al. Effect of peak ground parameters on the nonlinear seismic response of long lined tunnels [J]. Tunnelling and Underground Space Technology, 2020, 95: 103175.
[26] Luy D Y, Ma S, Yu C, et al. Effects of oblique incidence of SV waves on nonlinear seismic response of a lined arched tunnel [J]. Shock and Vibration, 2020, 2020: 1-12.
[27] Zhang H, Zhang Q, Wang D, et al. Seismic response of utility tunnel in trapezoidal backfilled soil under P wave and amplification effect of ground motion [J]. Journal of Earthquake Engineering, 2024, 1-15.
[28] Huang J Q, Du X L, Zhao M, et al. Impact of incident angles of earthquake shear (S) waves on 3-D non-linear seismic responses of long lined tunnels [J]. Engineering geology, 2017, 222, 168-185.
[29] Zarzalejos J M, Aznárez J J, Padrón L A, et al. Influences of type of wave and angle of incidence on seismic bending moments in pile foundations [J]. Earthquake engineering & structural dynamics, 2014, 43(1): 41-59
[30] 杜修力, 赵密, 王进廷. 近场波动模拟的人工应力边界条件[J]. 力学学报, 2006(01): 49-56.
 Du Xiuli, Zhao Mi, Wang Jinting. Artificial stress boundary conditions for near-site wave simulation [J]. Chinese Journal of Theoretical and Artistic Machinery, 2006, 38(1):8. 
[31] Wang F, Song Z Q, Liu Y H, et al. Study on response characteristics and tensile failure evaluation of asphalt concrete core wall under oblique incidence of SV wave space [J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1733-1742.
[32] 张季, 谭灿星, 叶国涛等. SV波超临界角斜入射时层状地基地震动输入在ABAQUS中的实现 [J]. 工程力学, 2021, 38 (04): 200-210.
ZHANG Ji, TAN Canxing, YE Guotao, et al. Realization of layered ground base motion input in ABAQUS when SV wave is incident at supercritical angle [J]. Engineering Mechanics, 2021, 38(04): 200-210.
[33] Chen D H, Pan Z Y, Zhao Y Y. Seismic damage characteristics of high arch dams under oblique incidence of SV waves [J]. Engineering Failure Analysis, 2023, 152: 107445.
[34] 杜修力,徐海滨,赵密. SV波斜入射下高拱坝地震反应分析 [J]. 水力发电学报, 2015, 34 (04): 139-145.
DU XiuLi, XU HaiBin, ZHAO Mi. Analysis of seismic response of high arch dam under SV wave oblique incidence [J]. Journal of Hydropower Generation, 2015, 34 (04): 139-145.
[35] Huang Z Y, Feng Y Z, Tang A P, et al. Influence of oblique incidence of P-waves on seismic response of prefabricated utility tunnels considering joints [J]. Soil Dynamics and Earthquake Engineering, 2023, 167: 107797.
[36] Wang G B, Yuan M Z, Miao Y, et al. Experimental study on seismic response of underground tunnel-soil-surface structure interaction system. [J]. Tunnelling and Underground Space Technology, 2018, 76: 145-159.
[37] Lysmer J, Kuhlemeyer R L. Finite dynamic model for infinite media. [J]. Journal of the engineering mechanics division, 1969, 95(4): 859-877. 
[38] Zhou T l, Dong C S , Li S, et al. Seismic response of tunnel with damping layer under oblique incident SV wave. [J]. World Earthquake Engineering, 2024, 40(01): 1-12.
[39] 谢礼立, 翟长海. 最不利设计地震动研究 [J]. 地震学报, 2003, 25(3): 250–261.
Xie Lili, Zhai Changhai. Study on the most unfavorable design ground vibration [J]. Journal of Earthquake Engineering, 2003, 25(3): 250-261.
[40] 翟长海, 谢礼立. 抗震结构最不利设计地震动研究 [J]. 土木工程学报, 2005, 38(12): 51–58.
Zhai Changhai, Xie Lili. Study on the most unfavorable design ground vibration of earthquake resistant structures [J]. Journal of Civil Engineering, 2005, 38(12): 51-58.
[41] 许成顺, 胡正一, 史跃波, 等. SV波斜入射下预制拼装式综合管廊接口的地震响应规律 [J]. 北京工业大学学报, 2022, 48 (12): 1215-1225. 
XU Chengshun, HU Zhengyi, SHI Yuebo, et al. Seismic response law of prefabricated integrated utility tunnel interface under oblique incidence of SV wave [J]. Journal of Beijing University of Technology, 2022, 48(12): 1215-1225.
[42] Huang D L, Zong Z L, Tang A P, et al. Dynamic response and vibration isolation of pipes inside a utility tunnel passing through nonhomogeneous soil under seismic action. Soil Dynamics and Earthquake Engineering, 2022, 163: 107522. 
[43] BAZIAR M H, MOGHADAM M R, KIM D S, et al. Effect of underground tunnel on the ground surface acceleration [J]. Tunnelling and Underground Space Technology, 2014, 44: 10-22.
[44] LU S S, XU H, WANG L G, et al. Effect of flexibility ratio on seismic response of rectangular tunnels in sand: Experimental and numerical investigation [J]. Soil Dynamics and Earthquake Engineering, 2022, 157: 107256.
[45] Wang J N. Seismic design of tunnels: a simple state-of-the-art design approach [J]. 1993.
[46] HASHASH Y M A, HOOK J J, SCHMIDT B, et al. Seismic 7design and analysis of underground structures [J]. Tunnelling and underground space technology, 2001, 16(4): 247-293.
[47] HUSHMAND A, DASHTI S, DAVIS C, et al. A centrifuge study of the influence of site response, relative stiffness, and kinematic constraints on the seismic performance of buried reservoir structures [J]. Soil Dynamics and Earthquake Engineering, 2016, 88: 427-438.

PDF(5735 KB)

Accesses

Citation

Detail

段落导航
相关文章

/