冲击荷载作用下干湿循环石灰岩拉伸破坏特性试验研究

段继超1, 宗琦1, 高朋飞1, 汪海波1, 吕闹1, 王浩1, 程兵1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 204-215.

PDF(3493 KB)
PDF(3493 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 204-215.
论文

冲击荷载作用下干湿循环石灰岩拉伸破坏特性试验研究

  • 段继超1,宗琦1,高朋飞1,汪海波1,吕闹1,王浩1,程兵1, 2
作者信息 +

A study on dynamic tensile dynamic response and deformation failure characteristics of dry and wet cycles limestone

  • DUAN Jichao1,ZONG Qi1,GAO Pengfei1,WANG Haibo1,L Nao1,WANG Hao1,CHENG Bing1,2
Author information +
文章历史 +

摘要

为研究干湿循环和应力率对石灰岩动态拉伸性能的影响,利用分离式霍普金森压杆(SHPB)试验系统,对不同干湿循环等级的石灰岩试样开展动态劈裂试验,结合超高速相机、数字图像相关法(DIC)以及裂纹分析工具FracPaQ,探究应力率、干湿循环作用对试样应变场演化、裂纹扩展、能量耗散以及分形维数的影响规律。研究结果表明:冲击荷载作用下,试样主应变集中域和主裂纹率先出现在试样中心并沿其径向发育,次生裂纹产生在试样与压杆的接触端,裂纹之间充分发育、交汇,贯穿形成破碎面,试样最终发生破坏;干湿循环0次试样在133.48、149.79、174.36、234.91 GPa•s-1应力率下主裂纹张开速度分别为84.67、94.83、101.50和105.67 m/s,最大主裂纹张开速度随着应力率的增加而增大;基于FracPaQ软件对试样破坏裂纹进行分析发现,在主裂纹张开早期,试样水平方向上主裂纹对应的归一化长度占主导地位,垂直方向上裂纹对应的归一化长度随着主裂纹张开宽度的增加及次生裂纹的扩展而增大;随着干湿循环次数的增加,试样次生裂纹逐渐发育,导致垂直方向上裂纹对应的归一化长度逐渐增大;石灰岩拉伸破坏过程中试样断裂轨迹长度与角度的关系符合高斯函数;随着应力率的增大,试样抗拉强度增大,导致其发生破坏时所需吸收能增加,并伴随着分形维数的增大;随着干湿循环次数的增加,岩样承载能力下降,其发生破坏时所需吸收能减小,同时分形维数明显增大。

Abstract

In order to study the effects of dry-wet cycles and stress rate on the dynamic tensile properties of limestone, the dynamic splitting tests of limestone samples with different dry-wet cycles grades were carried out by using the split Hopkinson pressure bar (SHPB) test system. Combined with the ultra-high-speed camera, digital image correlation method (DIC) and crack analysis tool FracPaQ, the effects of stress rate and dry-wet cycles on the strain field evolution, crack propagation, energy dissipation and fractal dimension of the samples were investigated. The results show that under the impact load, the main strain concentration domain and the main crack of the specimen first appear in the center of the specimen and develop along its radial direction. The secondary cracks are generated at the contact end of the specimen and the compression bar. The cracks are fully developed and intersected, and the broken surface is formed through, and the specimen is finally destroyed.During the observation period, the main crack opening speeds of the samples with 0 times of dry-wet cycles under the stress rates of 133.48, 149.79, 174.36 and 234.91 GPa•s-1 were 84.67, 94.83, 101.50 and 105.67 m/s, The maximum main crack opening velocity increases with the increase of stress rate. Based on FracPaQ software, it is found that in the early stage of the main crack opening, the normalized length corresponding to the main crack in the horizontal direction of the sample is dominant, and the normalized length corresponding to the crack in the vertical direction increases with the increase of the opening width of the main crack and the expansion of the secondary crack. With the increase of the number of dry-wet cycles, the secondary cracks of the sample gradually develop, which leads to the increase of the normalized length corresponding to the cracks in the vertical direction. The relationship between the length and angle of the fracture trajectory of the specimen during the tensile failure of the limestone conforms to the Gaussian function ; as the stress rate increases, the tensile strength of the sample increases, resulting in an increase in the absorption energy required for failure, accompanied by an increase in the fractal dimension. With the increase of the number of dry-wet cycles, the bearing capacity of the rock sample decreases, the absorption energy required for its failure decreases, and the fractal dimension increases significantly.

关键词

动态拉伸 / 干湿循环 / 数字图像相关法(DIC) / 裂纹扩展 / 断裂痕迹 / 分形维数

Key words

dynamic stretching / dry-wet cycles / digital Image Correlation (DIC) / crack propagation / fracture trace / fractal dimensio

引用本文

导出引用
段继超1, 宗琦1, 高朋飞1, 汪海波1, 吕闹1, 王浩1, 程兵1, 2. 冲击荷载作用下干湿循环石灰岩拉伸破坏特性试验研究[J]. 振动与冲击, 2024, 43(24): 204-215
DUAN Jichao1, ZONG Qi1, GAO Pengfei1, WANG Haibo1, L Nao1, WANG Hao1, CHENG Bing1, 2. A study on dynamic tensile dynamic response and deformation failure characteristics of dry and wet cycles limestone[J]. Journal of Vibration and Shock, 2024, 43(24): 204-215

参考文献

[1] 杨天鸿, 王赫, 董鑫, 等. 露天矿边坡稳定性智能评价研究现状、存在问题及对策[J].煤炭学报, 2020, 45(6): 2277–2295.
YANG Tianhong, WANG He, DONG Xin, et al. Current situation, problems and countermeasures of intelligent evaluation of slope stability in open pit[J]. Journal of China Coal Society, 2020, 45(6): 2277-2295.
[2] 赖增伟, 玉达变, 刘先林, 等. 干湿循环导致粉砂质泥岩力学特性变化规律研究[J].力学季刊, 2023, 44(2): 407–417.
LAI Zengwei, YU Dabian, LIU Xianlin, et al. Study on the variation of mechanical properties of silty mudstone caused by drying–wetting cycle[J]. Chinese Quarterly of Mechanics, 2023, 44(2): 407– 417.
[3] AN R, KONG L W, ZHANG X W, et al. Effects of dry–wet cycles on three–dimensional pore structure and permeability characteristics of granite residual soil using X–ray micro computed tomography[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3): 851–860.
[4] ZHOU Z L, CAI X, CHEN L, et al. Influence of cyclic wetting and drying on physical and dynamic compressive properties of sandstone[J]. Engineering Geology, 2017, 220: 1–12. 
[5] 姚华彦, 张振华, 朱朝辉, 等. 干湿交替对砂岩力学特性影响的试验研究[J].岩土力学, 2010, 31(12): 3704–3708+3714.
YAO Huayan, ZHANG Zhenhua, ZHU Zhaohui, et al. Experimental study of mechanical properties of sandstone under cyclic drying and wetting[J]. Rock and Soil Mechanics, 2010, 31(12): 3704–3708+3714.
[6] MENG B, JING H W, ZHU W X, et al. Influences of saturation and wetting–drying cycle on mechanical performances of argillaceous limestone from Liupanshan Tunnel, China[J]. Advances in Materials Science and Engineering, 2019, (6): 1–10. 
[7] YAO H Y, ZHANG Z H, ZHU C H, et al. Mechanical properties of sandstone after cyclic drying and wetting[J]. Rock and Soil Mechanics, 2010, 31(12): 3704-3708.
[8] 王成, 王春, 苏承东, 等. 不同加载速率对石灰岩巴西劈裂特性的影响[J].采矿与安全工程学报, 2021, 38(5): 1036–1044.
WANG Cheng, WANG Chun, SU Chengdong, et al. Effects of different loading rates on Brazilian tension characteristics of limes-one[J]. Journal of Mining and Safety Engineering, 2021,38(5):1036–1044.
[9] 平琦, 马芹永, 袁璞. 岩石试件SHPB劈裂拉伸试验中能量耗散分析[J].采矿与安全工程学报, 2013, 30(3): 401–407.
PING Qi, MA Qinyong, YUAN Pu. Energy dissipation analysis of stone specimens in SHPB tensile test[J]. Journal of Mining and Safety Engineering, 2013, 30(3): 401–407.
[10] 许金余, 刘石, 孙蕙香. 3种岩石的平台巴西圆盘动态劈裂拉伸试验分析[J].岩石力学与工程学报, 2014, 33(S1): 2814–2819
XU Jinyu, LIU Shi, SUN Huixiang. Analysis of dynamic splittensile tests of flattened Brazilian disc of three rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2814–2819.
[11] 宫凤强, 李夕兵, 董陇军. 圆盘冲击劈裂试验中岩石拉伸弹性模量的求解算法[J].岩石力学与工程学报, 2013, 32(4): 705–713.
GONG Fengqiang, LI Xibing, DONG Long Jun. Algorithm to estimate tensile modulus ofrock in disk impact splitting test[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 705–713.
[12] 谢和平, 彭瑞东, 鞠杨, 等. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21): 3565–3570.
XIE Heping, PENG Ruidong, JU Yang, et al. Energy dissipation of rock deformation and fracture[J]. Chinese Joural of Rock Mechanics and Engineering, 2004, 23(21): 3565–3570. 
[13] 谢和平, 鞠杨, 黎立云, 等. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17):3003–3010.
XIE Heping, JU Yang, LI Liyun, et al. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. 
[14] 彭瑞东, 谢和平, 鞠杨, 等. 砂岩拉伸过程中的能量耗散与损伤演化分析[J].岩石力学与工程学报, 2007, 26(12): 2526–2531.
PENG Ruidong, XIE Heping, JU Yang, et al. Analysis of energy dissipation and damage evolution of sandstone during tensile process[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2526–2531. 
[15] FENG J J, WANG E Y, CHEN X, et al. Energy dissipation rate: An indicator of coal deformation and failure under static and dynamic compressive loads[J]. International Journal of Mining Science and Technology, 2018, 28(3): 397–406. 
[16] 曹丽丽, 浦海, 李明, 等. 煤系砂岩动态拉伸破坏及能量耗散特征的试验研究[J].煤炭学报, 2017, 42( 2) : 492–499.
CAO Lili, PU Hai, LI Ming, et al.Experimental research on the dynamic tensile fracture and the energy dissipation characteristics of coal–serial sandstone[J].Journal of China Coal Society, 2017, 42( 2) : 492–499.
[17] 杜 彬, 白海波, 马占国, 等.干湿循环作用下红砂岩动态拉伸力学性能试验研究[J].岩石力学与工程学报, 2018, 37(7): 1671-1679.
DU Bin, BAI Hai-bo, MA Zhan-guo, et al. Experimental study on the dynamic tensile properties of red-sandstone after cyclic wetting and drying[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1671-1679.
[18] 刘运思, 何楚韶, 傅鹤林, 等. 冲击荷载下饱水板岩拉伸力学特性及能耗规律[J]. 岩石力学与工程学报, 2020, 39(11): 2226–2233.
LIU Yunsi, HE Chushao, FU Helin, et al. Study on tensile mechanical properties and energy consumption law of saturated slate under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2226–2233.
[19] 刘石, 许金余, 白二雷, 等.基于分形理论的岩石冲击破坏研究[J].振动与冲击, 2013, 32(5):163–166. 
LIU Shi, XU Jinyu, BAI Erlei, et al.Research on impact fracture of rock based on fractal theory[J]. Journal of Vibration and Shock, 2013, 32(5):163–166.
[20] 杜梦萍, 潘鹏志, 纪维伟, 等. 炭质页岩巴西劈裂载荷下破坏过程的时空特征研究[J]. 岩土力学, 2016, 37(12): 3437–3446.
DU Mengping, PAN Pengzhi, JI Weiwei, et al. Time–space laws of failure process of carbonaceous shale in Brazilian split test[J]. Rock and Soil Mechanics, 2016, 37(12): 3437–3446.
[21] 杨科, 魏祯, 窦礼同, 等.含水煤样动态拉伸能量演化与破坏特征试验研究[J].煤炭学报, 2021, 46(2): 398–411.
YANG Ke, WEI Zhen, DOU Litong, et al. Research on dynamic tensile energy evolution and fractal characteristics of water–bearing coal samples[J].Journal of China Coal Society, 2021, 46(2): 398–411.
[22] 王浩, 宗琦, 汪海波, 等.冲击荷载下饱水凝灰岩断裂韧性及裂纹扩展分形特征研究[J].岩石力学与工程学报, 2023, 42(7):1709–1719.
WANG Hao, ZONG Qi, WANG Haibo, et al. Fractal characteristics of fracture toughness and crack propagation of saturated tuff under impact loads[J].Chinese Journal of Rock Mechanics and Engineering, 2023, 42(7): 1709–1719.
[23] 龚爽, 赵毅鑫, 周磊, 等.冲击荷载作用下含双孔洞裂纹石灰岩动态断裂行为[J].煤炭学报, 2023, 48(8):3030–3047.
GONG Shuang, ZHAO Yixin, ZHOU Lei, et al. Dynamic fracture behavior of limestone specimens containing double holes and crack under impact loading[J].Journal of China Coal Society, 2023, 48(8): 3030–3047.
[24] 中华人民共和国住房和城乡建设部. GB/T 50266–2013. 工程岩体试验方法标准[S]. 北京: 中国计划出版社, 2013.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. GB/T 50266–2013. Standard for test methods of engineering rock mass[S]. Beijing: China Planning Press, 2013. 
[25] ZHOU Y X, XIA K, LI X B, et al. Suggested methods for determining the dynamic strength parameters and Mode ‒I fracture toughness of rock materials[C]// The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007‒2014. Cham:Springer International Publishing, 2015: 35‒44.
[26] 中华人民共和国国家标准编写组. GB/T 23561.8–2024 煤与岩石物理力学性质测定方法[S]. 北京: 中国质检出版社, 2024.
The National Standard Compilation Groups of People's Republic of China. GB/T23561.8–2024 Methods for determining the physical and mechanical properties of coal and rock[S]. Beijing: Standards Press of China, 2024. 
[27] 马冬冬, 汪鑫鹏, 张文璞, 等.冲击荷载作用下冻土劈裂拉伸破坏特性试验研究[J].岩土工程学报, 2023, 45(7): 1533-1539.
MA Dongdong, WANG Xinpeng, ZHANG Wenpu, et al. Experimental study on splitting tensile failure characteristics of frozen soils under impact loads[J].Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1533-1539.
[28] ZHANG Q B, ZHAO J. Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads[J].International Journal of Rock Mechanics and Mining Sciences, 2013, 60, 423-439.
[29] MERCURI M, CARMINATI E, TARTARELLO C M, et al. Lithological and structural control on fracture frequency distribution within a carbonate–hosted relay ramp[J]. Journal of Structural Geology, 2020, 137.
[30] XU X, CHI L Y, YANG J, YU Q. Experimental Study on the Temporal and Morphological Characteristics of Dynamic Tensile Fractures in Igneous Rocks[J]. Applied Sciences. 2021; 11(23):11230.
[31] XU X, CHI L Y, YANG J, LV N. Investigation on the Deformation and Failure Characteristics of Concrete in Dynamic Splitting Tests[J]. Materials. 2022; 15(5):1681.
[32] TYLER S W, WHEATCRAFTS W. Fractal scaling of soil particle size distributions: analysis and limitations[J]. Soil Science Society of America Journal, 1992, 56(2): 362–369.

PDF(3493 KB)

Accesses

Citation

Detail

段落导航
相关文章

/