返包式加筋土挡墙地震损伤状态评估指标研究

徐洪路1, 蔡晓光2, 3, 王海云1, 李思汉3, 4, 朱晨5

振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 24-33.

PDF(1729 KB)
PDF(1729 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 24-33.
论文

返包式加筋土挡墙地震损伤状态评估指标研究

  • 徐洪路1,蔡晓光2,3,王海云1,李思汉3,4,朱晨5
作者信息 +

Study on evaluation indexes of seismic damage state of wrap-faced reinforced soil retaining walls

  • XU Honglu1,CAI Xiaoguang2,3,WANG Haiyun1,LI Sihan3,4,ZHU Chen5
Author information +
文章历史 +

摘要

地震损伤状态评估指标可用于快速评估震后加筋土挡墙服役状态,也可服务于基于位移的抗震设计方法。鉴于目前仍缺乏返包式加筋土挡墙的地震损伤状态评估指标,通过模型振动台试验探讨动力特性变化规律及其与损伤程度之间的关系,结果表明:挡墙的变形模式随动荷载强度的增大而发生变化,当所有工况结束后,最大总残余位移为27.8mm(2.78%H);结构的动力特性变化规律可以表征结构的损伤状态;随动荷载强度的增大,加筋土体的等效剪切应变从1×10-4增至2×10-2,结构所处的状态更加危险。最终,提出了一种基于动力特性和位移指数分布规律来确定加筋土挡墙地震损伤状态指标的方法,通过该方法将返包式加筋土挡墙的地震损伤状态定义为三个等级,并给出了对应的位移指数。

Abstract

The evaluation indexes of seismic damage state can be used to quickly evaluate the performance state of reinforced soil retaining walls (RSRWs) after the earthquake, and can also be used for seismic fragility analysis and performance-based seismic design methods. In view of the lack of seismic damage assessment indexes for wrap-faced RSRWs, exploring the variation rule of dynamic properties and its relationship with the damage degree through shaking table tests. The results show that the deformation mode of the wrap-faced RSRWs changes with the increase of dynamic load intensity, and the maximum total residual displacement is 27.8 mm (2.78% H) when all loading conditions were over. The dynamic characteristics of the structure can characterize the damage state of the structure. With the increase of the dynamic load intensity, the equivalent shear strain increases from 1×10-4 to 2×10-2, and the structure was in an even more dangerous state. Finally, a method for determining the seismic damage assessment indexes of RSRWs based on the distribution law of dynamic characteristics and displacement index was proposed, by which the seismic damage state of wrap-faced RSRWs was defined as three levels and the corresponding displacement index iwas given.

关键词

返包式加筋土挡墙 / 振动台试验 / 动力特性 / 地震损伤状态评估指标

Key words

wrap-faced reinforced soil retaining wall / shaking table test / dynamic characteristic / evaluation indexes of seismic damage state

引用本文

导出引用
徐洪路1, 蔡晓光2, 3, 王海云1, 李思汉3, 4, 朱晨5. 返包式加筋土挡墙地震损伤状态评估指标研究[J]. 振动与冲击, 2024, 43(24): 24-33
XU Honglu1, CAI Xiaoguang2, 3, WANG Haiyun1, LI Sihan3, 4, ZHU Chen5. Study on evaluation indexes of seismic damage state of wrap-faced reinforced soil retaining walls[J]. Journal of Vibration and Shock, 2024, 43(24): 24-33

参考文献

[1] 李广信. 地震与加筋土结构[J]. 土木工程学报, 2016, 49(07): 1-8.
LI Guangxin.Earthquake and earth reinforcement[J]. China Civil Engineering Journal, 2016, 49(07): 1-8.
[2] HOE I Ling, DOV Leshchinsky, Nelson N S Chou. Post-earthquake investigation on several geosynthetic- reinforced soil retaining walls and slopes during the Ji-Ji earthquake of Taiwan[J]. Soil Dynamics and Earthquake Engineering, 2001, 21(4):397-313.
[3] SANDRI D. A performance summary of reinforced soil structures in the greater Los Angeles area after the Northridge earthquake[J]. Geotextiles and Geomembranes, 1997, 15(4-6): 235-253.
[4] LING H I, LESHCHINSKY D. Failure analysis of modular-block reinforced-soil walls during earthquakes[J]. Journal of performance of constructed facilities, 2005, 19(2): 117-123.
[5] KOERNER R M, KOERNER G R. An extended data base and recommendations regarding 320 failed geosynthetic reinforced mechanically stabilized earth (MSE) walls[J]. Geotextiles and Geomembranes, 2018, 46(6): 904-12.
[6] PAMUK A, KALKAN E, LING H I. Structural and geotechnical impacts of surface rupture on highway structures during recent earthquakes in Turkey[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(7-10): 581-589.
[7] KOSEKI J, KODA M, MATSUO S, et al. Damage to railway earth structures and foundations caused by the 2011 off the Pacific Coast of Tohoku Earthquake[J]. Soils and Foundations, 2012, 52(5): 872-889.
[8] 朱宏伟. 路基支挡结构地震动力响应及抗震设计改进技术研究[D]. 西南交通大学,2014.
ZHU Hongwei. Research on dynamic property under earthquake and seismic design improvement techniques of subgrade retaining structures[D]. Southwest Jiaotong University, 2014.
[9] MOMANI Z, YAZDANI N, BENEBERU E. In Situ Evaluation of Bridge MSE Retaining Walls with Excessive Panel Movements[J]. International Journal of Civil Engineering, 2023, 21(8): 1257-73.
[10] 张建经, 冯君, 肖世国,等. 支挡结构抗震设计的2个关键技术问题[J]. 西南交通大学学报, 2009, 44(03): 321-326.
ZHANG Jianjing, FENG Jun, XIAO Shiguo, et al. Discussions on two key technical problems for seismic design of retaining structures[J]. Journal of Southwest Jiaotong University, 2009, 44(3): 321-326.
[11] 蒋建清, 杨果林. 格宾加筋土挡墙抗震性能及数值分析[J].土木工程学报, 2012, 45(01): 100-108.
JIANG Jianqing, YANG Gguolin. Numerical analysis of seismic behaviour of gabion-reinforced soil retaining wall[J]. China Civil Engineering Journal, 2012, 45(1): 100-108.
[12] 朱宏伟, 项琴, 赖军. 基于增量动力分析的加筋土挡墙抗震性能评估[J]. 振动与冲击, 2021, 40(19): 261-268.
ZHU Hongwei, XIANG Qin, LAI Jun. Aseismic performance evaluation of reinforced earth retaining wall based on IDA[J]. Journal of Vibration and Shock, 2021, 40(19): 261-268.
[13] 姚宝宽, 王丽艳, 吉文炜等. 考虑地震强度与外荷载影响的胎面挡土墙抗震性能分析[J]. 中外公路, 2021, 41(06): 26-30.
YAO Baokuan, WANG Liyan, JI Wenwei, et al.Analysis on Seismic Performance of Waste Tire-Faced Retaining Wall Considering Earthquake Strength and External Load[J]. Journal of China and Foreign Highway, 2021, 41(06): 26-30.
[14] KUWANO J, MIYATA Y, KOSEKI J. Performance of reinforced soil walls during the 2011 Tohoku earthquake[J]. Geosynthetics International, 2014, 21(3): 179-96.
[15] YAZDANDOUST M. Investigation on the seismic performance of steel-strip reinforced-soil retaining walls using shaking table test[J]. Soil Dynamics and Earthquake Engineering, 2017, 97: 216-32.
[16] LI S, CAI X, JING L, et al. Lateral displacement control of modular-block reinforced soil retaining walls under horizontal seismic loading[J]. Soil Dynamics and Earthquake Engineering, 2021, 141.
[17] 李思汉, 蔡晓光, 黄鑫, 等. 基于时域识别方法的加筋土挡墙动力特性研究[J]. 振动与冲击, 2022, 41(22): 113-120.
LI Sihan, CAI Xiaoguang, HUANG Xin, et,al. Dynamic characteristics of a reinforced soil retaining wall based on the time domain identification method[J]. Journal of Vibration and Shock, 2022, 41(22): 113-120.
[18] CHOU N N S, LIU T Y, ChEN Y S, et al. Comparison of various types of MSE wall facings[C]. Proceedings of the 11th International Geosynthetics Conference, Seoul, Korea. 2018: 16-21.
[19] SANTOS E C G, PALMEIRA E M, BATHURST R J. Behaviour of a geogrid reinforced wall built with recycled construction and demolition waste backfill on a collapsible foundation[J]. Geotextiles and Geomembranes, 2013, 39: 9-19.
[20] 张敏政. 地震模拟实验中相似律应用的若干问题[J]. 地震工程与工程振动, 1997(02): 52-58.
ZHANG Minzheng. study on similitude laws for shaking table tests[J]. Earthquake Engineering and Engineering Dynamic, 1997(02): 52-58.
[21] HUANG C C. Settlement of footings at the crest of reinforced slopes subjected to toe unloading[J]. Geosynthetics International, 2016, 23(4): 247-56.
[22] American Association of State Highway and Transportation Officials(AASHTO)AASHTO. LRFD Bridge Design Specification: LRFDBDS-9[S]. Washington DC:AASHTO American Association of State Highway and Transportation Officials, 2020.
[23] FHWA. Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes-Volume I: FHWA-NHI-10-024[S]. Washington DC: U.S. Department of Transportation Federal Highway Administration, 2009.
[24] 国家铁路局. 铁路路基支挡结构设计规范: TB10025-2019[S]. 北京: 中国铁道出版社, 2019.
NRA. Code for design of retaining structures of railway earthworks: TB10025-2019[S]. Beijing: China Railway Publishing House, 2019.
[25] 中华人民共和国交通运输部. 公路路基设计规范: JTG D30-2015[S]. 北京: 人民交通出版社, 2015.
MOT. Specifications for design of highway subgrades: JTG D30-2015[S]. Beijing: China Communications Press, 2015
[26] 杨广庆, 吕鹏, 庞巍, 等.返包式土工格栅加筋土高挡墙现场试验研究[J]. 岩土力学, 2008, (02): 517-522.
YANG Guangqing, LV Peng, PANG Wei, et al. Research on geogrid reinforced soil retaining wall with wrapped face by in-situ tests[J]. Rock and Soil Mechanics, 2008, (02): 517-522.
[27] 吴连海, 杨广庆, 张青波, 等. 高速铁路加筋土挡墙动响应规律现场试验[J]. 西南交通大学学报, 2017, 52(03): 546-553.
WU Lianhai, YANG Guangqing, ZHANG Qingbo, et al. In-Situ test on dynamic responses of reinforced soil retaining walls for high-speed railways[J]. Journal of Southwest Jiaotong University, 2017, 52(03): 546-553.
[28] XU C, LUO Y S, ZHU H, et al. Performance of high geosynthetic-reinforced embankments[J]. Geotechnical Special Publication, n231 GSP, 2013: 515–518.
[29] Eftekhari Z, Panah A K. 1-g shaking table investigation on seismic performance of polymeric-strip reinforced-soil retaining walls built on rock slopes with limited reinforced zone[J]. Soil Dynamics and Earthquake Engineering, 2021, 147: 106758.
[30] Yazdandoust M, Jamnani A R, Sabermahani M. Dynamic evaluation of tiered geogrid mechanically stabilized earth (MSE) walls using shake table test[J]. Acta Geotechnica, 2023: 1-27.
[31] El-Emam M M, Bathurst R J. Facing contribution to seismic response of reduced-scale reinforced soil walls[J]. Geosynthetics International, 2005, 12(5): 215-238.
[32] Zheng Y, Li F, Guo W, et al. Influence of facing conditions on the dynamic response of back-to-back MSE walls[J]. Soil Dynamics and Earthquake Engineering, 2023, 164: 107650.
[33] American Society for Testing and MaterialsASTM(ASTM). Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method1: D6637M-15[S]. Pennsylvania: ASTMAmerican Society for Testing and Materials, 2015.
[34] YANG G Q, ZHANG B, LV P, et al. Behaviour of geogrid reinforced soil retaining wall with concrete-rigid facing[J]. Geotextiles and Geomembranes, 2009, 27(5): 350-6.
[35] YANG G Q, LIU H B, ZHOU Y T, et al. Post-construction performance of a two-tiered geogrid reinforced soil wall backfilled with soil-rock mixture[J]. Geotextiles and Geomembranes, 2014, 42(2): 91-7.
[36] KAZIMIEROWICZFRANKOWSKA K. A case study of a geosynthetic reinforced wall with wrap-around facing[J]. Geotextiles and Geomembranes, 2005, 23(1): 107-15.
[37] JIA M, ZHU W, XU C. Performance of a 33m high geogrid reinforced soil embankment without concrete panel[J]. Geotextiles and Geomembranes, 2021, 49(1): 122-9.
[38] XU H, CAI X, WANG H, et al. Analysis of the Working Response Mechanism of Wrapped Face Reinforced Soil Retaining Wall under Strong Vibration[J]. Sustainability, 2022, 14(15).
[39] MURALI KRISHNA A, MADHAVI LATHA G. Seismic response of wrap-faced reinforced soil-retaining wall models using shaking table tests [J]. Geosynthetics International, 2007, 14(6): 355-64.
[40] SAFAEE A M, MAHBOUBI A, NOORZAD A. Experimental investigation on the performance of multi-tiered geogrid mechanically stabilized earth (MSE) walls with wrap-around facing subjected to earthquake loading[J]. Geotextiles and Geomembranes, 2021, 49(1): 130-45.
[41] SABERMAHANI M, GHALANDARZADEH A, FAKHER A. Experimental study on seismic deformation modes of reinforced-soil walls [J]. Geotextiles and Geomembranes, 2009, 27(2): 121-36.
[42] 徐洪路. 刚/柔组合墙面加筋土挡墙动力反应模型试验及数值分析[D]. 防灾科技学院, 2021.
XU Honglu. Model test and numerical analysis on dynamic response of reinforced soil retaining walls with flexible/rigid facings[D]. Institute of Disaster Prevention, 2021.
[43] IBRAHIM S R. An approach for reducing computational requirements in modal identification[J]. AIAA Journal, 1986, 24(10): 1725-7.
[44] JAMNANI A R, YAZDANDOUST M, SABERMAHANI M. Effect of a two-tiered configuration on the seismic behavior of reinforced soil walls[J]. Geosynthetics International, 2023, 30(1): 3-28.
[45] CAO L C, FU X, WANG Z J, et al. Seismic responses of the steel-strip reinforced soil retaining wall with full-height rigid facing from shaking table test[J]. Journal of Mountain Science, 2018, 15(5): 1137-52.
[46] XU P, JIANG G. Calculation of Natural Frequencies of Retaining Walls Using the Transfer Matrix Method[J]. Advances in Civil Engineering, 2019, 2019: 1-8.
[47] GHANBARI A. An analytycal method for calculating the natural frequency of retaining walls[J]. International Journal of Civil Engineering, 2013, 11(1): 1-9.
[48] ZEGHAL M. Analysis of Site Liquefaction Using Earthquake Records[J]. Journal of Geotechnical Engineering, 1994, 120(6): 996-1017.
[49] BRENNAN A J, THUSYANTHAN N I, MADABHUSHI S P. Evaluation of Shear Modulus and Damping in Dynamic Centrifuge Tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(12): 1488-97.
[50] 吴建奇, 李磊, 王军. 不同土工合成材料与再生混凝土骨料界面动剪切特性研究[J]. 振动与冲击, 2022, 41(01): 279-287.
WU Jianqi, LI Lei, WANG Jun. Dynamic shear characteristics of interface between different geosynthetics and recycled concrete aggregate[J]. Journal of Vibration and Shock, 2022, 41(01): 279-287.
[51] 孙晋. 加筋土动力特性试验研究[D]. 太原理工大学, 2007.
SUN Jin. The experimental study on the dynamic bеhavior of reinforced soil[D]. Dalian University of Technology, 2007.
[52] HATAMI K, BATHURST R J. Effect of structural design on fundamental frequency of reinforced-soil retaining walls[J]. Soil Dynamics and Earthquake Engineering, 2000, 19(3): 137-157.
[53] EL-EMAM M M. Modulus and damping from shaking table tests of reinforced soil walls[J]. Geomechanics and Geoengineering, 2014, 9(4): 279-93.
[54] 董杉. 地震荷载作用下顺层岩质斜坡结构面剪切特性及形变位移计算方法研究[D]. 成都理工大学, 2020.
DONG Shan. Research on Structural Plane Shear Characteristics and Deformation Displacement Calculation Method of Bedding Rock Slope under Seismic Load[D]. Chengdu University of Technology, 2020.
[55] 杜岩, 谢谟文, 蒋宇静, 等. 基于固有振动频率的滑坡安全评价新方法[J]. 工程科学学报, 2015, 37(09): 1118-1123.
DU Yan, XIE Mowen, JIANG Yujing, et al. A new method for landslide safety assessments based on natural vibration frequency[J]. Chinese Journal of Engineering, 2015, 37(09): 1118-1123.
[56] SALAWU O S. Detection Of structural damage through changes in frequency: a review[J]. Engineering Structures, 1997, 19(9): 718-723.
[57] Washington State Department of TransportationWSDOT(WSDOT). Geotechnical Design Manual: M46-03.16[S]. Washington State Department of Transportation,WSDOT, 2022.

PDF(1729 KB)

Accesses

Citation

Detail

段落导航
相关文章

/