弹体侵彻平面薄靶板等效模型建立与仿真模拟

肖有才1, 王海1, 范晨阳2, 邹宇3, 韩用3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 243-250.

PDF(1518 KB)
PDF(1518 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 243-250.
论文

弹体侵彻平面薄靶板等效模型建立与仿真模拟

  • 肖有才1,王海1,范晨阳2,邹宇3,韩用3
作者信息 +

Establishment and simulation analysis of an equivalent model of a projectile body penetrating flat thin target plate

  • XIAO Youcai1,WANG Hai1,FAN Chenyang2,ZOU Yu3,HAN Yong3
Author information +
文章历史 +

摘要

基于极限穿透速度相等原则,采用量纲分析的方法,推导出适用于不同钢材薄靶板抗尖卵形弹侵彻的等效模型。运用有限元软件LS-DYNA对12.7mm穿甲弹芯垂直侵彻30CrMnSi靶板和45号钢靶板过程进行仿真,对得到的等效厚度进行拟合,确定30CrMnSi靶板和45号钢靶板等效模型系数。并对30CrMnSi靶板和其等效的45号钢靶板进行12.7mm穿甲弹芯侵彻实验,两者极限穿透速度误差小于2.7%,验证了等效模型的正确性,该研究可为子弹侵彻火箭发动机等效实验中等效靶板设计提供理论依据和数据参考。

Abstract

The principle of equal limiting penetration velocity is employed to derive an equivalent model applicable to thin target plates of different steel materials, designed to resist the penetration of pointed ovoid bullets. This is achieved through the use of magnitude analysis. The finite element software LS-DYNA was employed to simulate the vertical penetration of the 12.7mm armor-piercing bullet core through the 30CrMnSi target plate and the 45 steel target plate. The resulting equivalent thickness was used to determine the coefficients of the equivalent model for both the 30CrMnSi target plate and the 45 steel target plate. Furthermore, the 30CrMnSi target plate and its equivalent 45 steel target plate were employed in 12.7mm armor-piercing bullet core penetration experiments. The two limit penetration speed error was less than 2.7%. This verifies the correctness of the equivalent model. Additionally, the study can be used to validate the penetration of a bullet through a rocket engine, which is equivalent to the aforementioned experiments. This provides a theoretical basis and data reference.

关键词

极限穿透速度 / 弹体侵彻 / 平面薄靶板 / 等效模型

Key words

ultimate penetration velocity / projectile body penetration / flat thin target plate / equivalence model.

引用本文

导出引用
肖有才1, 王海1, 范晨阳2, 邹宇3, 韩用3. 弹体侵彻平面薄靶板等效模型建立与仿真模拟[J]. 振动与冲击, 2024, 43(24): 243-250
XIAO Youcai1, WANG Hai1, FAN Chenyang2, ZOU Yu3, HAN Yong3. Establishment and simulation analysis of an equivalent model of a projectile body penetrating flat thin target plate[J]. Journal of Vibration and Shock, 2024, 43(24): 243-250

参考文献

[1] ROSENBERG Z, VAYIG Y. On the Penetration of Concrete Targets by Non-Rigid Rods [J]. Journal of Dynamic Behavior of Materials, 2023, 9(2): 132-9.
[2] ROSENBERG Z, VAYIG Y, MALKA-MARKOVITZ A, et al. The penetration of limestone targets by rigid projectiles: Revisited [J]. International Journal of Protective Structures, 2020, 12(1): 110-25.
[3] PU B, WANG X, LI W等. Analytical Model Formulation of Steel Plate Reinforced Concrete Walls against Hard Projectile Impact [J]. Applied Sciences, 2022, 12(1).
[4] 柴象海, 张晓云, 侯亮等. 航空发动机风扇机匣包容性等效试验与分析方法 [J]. 振动与冲击, 2016, 35(02): 162-7.
CHAI Xiang-hai, ZHANG Xiao-yun, HOU Liang et al. Aero-engine fan magazine inclusive equivalent test and analysis method [J]. Vibration and Shock, 2016, 35(02): 162-7.
[5] 侯俊超, 王春光, 邓德志等. 高速弹丸侵彻混凝土靶板等效厚度研究 [J]. 兵器装备工程学报, 2021, 42(02): 9-14.
HOU Jun-chao, WANG Chun-guang, DANG De-zhi et al. Equivalent thickness of concrete target plate penetrated by high-speed projectile [J]. Journal of Weapons and Equipment Engineering, 2021, 42(02): 9-14.
[6] 袁浩, 任凯, 任晓鹏等. 蜂窝铝夹芯板抗侵彻性能研究 [J]. 振动与冲击, 2022, 41(19): 98-103+13.
YUAN Hao, REN Kai, REN Xiao-peng et al. Study on the anti-invasion performance of honeycomb aluminum sandwich panels [J]. Vibration and Shock, 2022, 41(19): 98-103+13.
[7] 马逢伯. 坦克典型装甲毁伤等效方法研究 [D]. 2023.
MA Feng-bo. Research on the Equivalent Method of Typical Armor Destruction of Tanks [D]. 2023.
[8] 熊冉, 高欣宝, 张俊坤等. 杆式穿甲弹侵彻下陶瓷与均质钢板的等效关系数值分析 [J]. 弹箭与制导学报, 2013, 33(05): 102-4.
XIONG Ran, GAO Xin-bao, ZHANG Jun-kun et al. Numerical analysis of the equivalence between ceramic and homogeneous steel plate under penetration of rod-type armor-piercing projectile [J]. Journal of Ballistics and Guidance, 2013, 33(05): 102-4.
[9] 熊飞, 石全, 王广彦等. 不同侵彻速度下陶瓷复合装甲等效均质钢靶板的建立 [J]. 火力与指挥控制, 2015, 40(04): 72-5.
XIONG Fei, SHI Quan, WANG Guang-yan et al. Establishment of equivalent homogeneous steel target plate for ceramic composite armor under different penetration velocities [J]. Firepower and Command and Control, 2015, 40(04): 72-5.
[10] 周捷, 智小琦, 徐锦波等. 小尺寸破片对单兵防护装备的侵彻研究 [J]. 爆炸与冲击, 2019, 39(02): 81-7.
ZHOU Jie, ZHI Xiao-qi, XU Jin-bo et al. Study on the penetration of small-size fragments on man-portable protective equipment [J]. Explosion and Impact, 2019, 39(02): 81-7.
[11] WANG Y, YAO X, WANG Z, et al. Compensation model for truncated ogive projectiles penetrating ship stiffened plates made from different materials [J]. Ocean Engineering, 2023, 286.
[12] 张建伟, 吴子奇, 张丰超等. 基于修正补偿模型法的不同材料钢板靶标相似性及等效设计方法 [J]. 兵工学报, 2023: 1-13.
ZHANG Jian-wei, WU Zi-qi, ZHANG Feng-chao et al. Similarity and equivalent design method of steel plate targets of different materials based on modified compensation modeling method [J]. Journal of Military Engineering, 2023: 1-13.
[13] 王逸南, 张建伟, 王治等. 基于板厚补偿的921A钢与Q345钢靶板在截卵形弹体侵彻下的等效方法 [J]. 兵工学报, 2021, 42(11): 2465-75.
WANG Yi-Nan, ZHANG Jian-Wei, WANG Zhi et al. Equivalence of 921A steel and Q345 steel target plates under truncated ovoid projectile penetration based on plate thickness compensation [J]. Journal of Military Engineering, 2021, 42(11): 2465-75.
[14] 姚熊亮, 王治, 叶墡君等. 舰船靶标设计中的材料等效方法 [J]. 哈尔滨工程大学学报, 2021, 42(08): 1110-6.
YAO Xiong-liang, WANG Zhi, YE Sun-Jun et al. Material Equivalence Method in Ship Target Design [J]. Journal of Harbin Engineering University, 2021, 42(08): 1110-6.
[15] 徐振桓. 弹目结合的舰船多层靶标毁伤等效性研究 [D]. 2019.
XU Zhen-huan. Study on the Equivalence of Ship Multi-Layer Target Destruction by Combining Bullet and Eye [D]. 2019.
[16] HAN L, JIANG H Y. Thickness Equivalent Method of 921A and Q235 Steel Plate Based on the Similarity of Projectile Penetration Residual Velocity [J]. Journal of Physics: Conference Series, 2023, 2478(7).
[17] 李蓉, 施坤林, 牛兰杰等. 侵彻引信过载特征等效低成本考核方法 [J]. 探测与控制学报, 2023, 45(01): 17-21.
LI Rong, SHI Kun-lin, NIU Lan-jie et al. Equivalent low-cost assessment method for overload characteristics of intrusion fuzes [J]. Journal of Detection and Control, 2023, 45(01): 17-21
[18] YAN A, PI A, YANG H, et al. Study on the Equivalence of Penetration Overloading for Projectile-Borne Components in Nonproportional Penetrators [J]. Shock and Vibration, 2022, 2022: 1-14.
[19] 孔祥韶, 吴卫国, 李晓彬等. 圆柱形战斗部破片速度及等效装药特性研究 [J]. 振动与冲击, 2013, 32(09): 146-9.
KONG Xiang-shao, WU Wei-guo, LI Xiao-bin et al. Study on fragmentation velocity and equivalent charge characteristics of cylindrical combatant [J]. Vibration and Shock, 2013, 32(09): 146-9.
[20] 罗刚, 谢伟, 李德聪等. 亚音速平头弹体侵彻船用钢板结构相似律研究 [J]. 武汉理工大学学报(交通科学与工程版), 2022, 46(01): 66-70.
LUO Gang, XIE Wei, LI De-cong et al. Structural similarity law study on the penetration of subsonic flat-head projectile into ship steel plate [J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2022, 46(01): 66-70.
[21] 高伟亮, 孙桂娟, 杨建超等. 国外钻地武器侵彻试验用弹等效模拟技术研究 [J]. 防护工程, 2022, 44(05): 21-5.
GAO Wei-liang, SUN Gui-juan, YANG Jian-chao et al. Research on equivalent simulation technology for penetration test of foreign drilling weapons [J]. Protection Engineering, 2022, 44(05): 21-5.
[22] 蒋东, 史文卿, 黄瑞源等. 高速/超高速侵彻的尺度效应及相似规律 [J]. 中国科学:物理学 力学 天文学, 2021, 51(10): 106-13.
JIANG Dong, SHI Wen-qin, HUANG Rong-yuan et al. Scaling effect and similarity law of high-speed/ultra-high-speed intrusion [J]. Science in China: Physics, Mechanics and Astronomy, 2021, 51(10): 106-13.
[23] SONG Q, DONG Y, CUI M, et al. A similarity method for predicting the residual velocity and deceleration of projectiles during impact with dissimilar materials [J]. Advances in Mechanical Engineering, 2017, 9(7).
[24] 刘源, 皮爱国, 杨荷等. 非等比例缩比侵彻/贯穿相似规律研究 [J] 爆炸与冲击. 2020, 40(03): 63-75.
LIU Yuan, PI Ai-guo, YANG He et al. Study on the similarity law of non-equal scaled intrusion/penetration [J] Explosion and Shock. 2020, 40(03): 63-75.
[25] ZU X D, HUANG Z X, XIAO Q Q, et al. Theoretical Study on Equivalent Target of Ceramic Composite Armor [J]. Propellants, Explosives, Pyrotechnics, 2015, 40(4): 576-82.
[26] 刘蓓蓓, 黄正祥, 祖旭东等. 单层爆炸反应装甲的间隔等效靶研究 [J]. 中国科技论文, 2015, 10(04): 488-91.
LIU Bei-bei, HUANG Zheng-xiang, ZU Xu-dong et al. Spaced Equivalent Target Study of Single-Layer Explosive Reactive Armor [J]. China Science and Technology Paper, 2015, 10(04): 488-91.
[27] 严平, 赵垭丽, 李昕等. 基于耗能模型的超空泡射弹水下侵彻鱼雷等效关系研究 [J]. 爆炸与冲击2021, 41(09): 63-77.
YAN Ping, ZHAO Ya-li, LI Xin et al. Study on the equivalence relationship between underwater penetration torpedo and super-vacuum projectile based on energy dissipation model [J]. Explosion and Shock 2021, 41(09): 63-77.
[28] 游毓聪, 邱从礼, 梁兴等. 穿甲过程中薄靶等效关系研究 [J].四川兵工学报 2014, 35(12): 61-3+77.
You Yu-cong, Qiu Cong-li, Liang Xing et al. Study on the equivalence relationship of thin targets during armor penetration [J]. Sichuan Journal of Military Engineering 2014, 35(12): 61-3+77.
[29] 于蓝. 基于后效损伤的陶瓷复合装甲等效靶研究 [D]. 北京理工大学, 2018.
Yu Lan. Research on the Equivalent Target of Ceramic Composite Armor Based on After-effect Damage [D].Beijing University of Technology, 2018.
[30] PEI Y, SONG B-F, HAN Q. A Generic Calculation Model for Aircraft Single-hit Vulnerability Assessment Based on Equivalent Target [J]. Chinese Journal of Aeronautics, 2006, 19(3): 183-9.
[31] 王茂英, 赵革, 贾小志等. 弹体侵彻贯穿混凝土与钢筋混凝土等效关系数值分析 [J]. 北京理工大学学报, 2011, 31(06): 631-3+51.
WANG Mao-ying, ZHAO Ge, JIA Xiao-zhi et al. Numerical analysis of the equivalent relationship between projectile penetration through concrete and reinforced concrete [J]. Journal of Beijing Institute of Technology, 2011, 31(06): 631-3+51.
[32] 曹兵. 不同材质靶板抗破片侵彻等效关系实验研究 [J]. 弹箭与制导学报, 2006, (04): 113-4+7.
CAO Bing. Experimental study on the equivalence of different target plates against fragmentation [J]. Journal of Missiles and Guidance, 2006, (04): 113-4+7.
[33] 王海福, 刘志雄, 冯顺山. 钢球侵彻钛合金靶板弹道极限速度 [J]. 北京理工大学学报, 2003, (02): 162-4.
WANG Hai-Fu, LIU Zhi-Xiong, FENG Shun-Shan. Ballistic limiting velocity of a steel ball penetrating a titanium alloy target plate [J]. Journal of Beijing Institute of Technology, 2003, (02): 162-4.
[34] GAO H C, LUO X B. Establishment for the Equivalent Target of Shaped Jet Penetration Composite Armor [J]. Applied Mechanics and Materials, 2013, 373-375: 1995-8.
[35] 甘宏伟, 陈威, 李吉峰等. 加筋板架结构与均质靶板等效关系的数值分析 [J]. 四川兵工学报, 2010, 31(11): 20-2.
GAN Hong-wei, CHEN Wei, LI Ji-feng et al. Numerical analysis of the equivalence relationship between reinforced plate frame structure and homogeneous target plate [J]. Sichuan Journal of Military Engineering, 2010, 31(11): 20-2.
[36] KIM Y, YOO J, LEE M. Optimal design of spaced plates under hypervelocity impact [J]. Journal of Mechanical Science and Technology, 2012, 26(5): 1567-75.
[37] 张志锋, 陈士涛, 刘涛等. ARM破片式战斗部对地空导弹制导雷达毁伤研究 [J]. 电光与控制, 2011, 18(07): 36-40.
ZHANG Zhi-feng, CHEN Shi-tao, LIU Tao et al. Study of ARM fragmentation warhead on surface-to-air missile guided radar damage [J]. Electro-Optics and Control, 2011, 18(07): 36-40.
[38] 周岩, 唐平, 常敬臻等. 舰舷结构与均质靶板等效关系的基本方法 [J]. 弹道学报, 2008, (01): 30-4.
ZHOU Yan, TANG Ping, CHANG Jing-zhen et al. A basic method for the equivalence relationship between a ship's side structure and a homogeneous target plate [J]. Journal of Ballistics, 2008, (01): 30-4.
[39] 陈小伟. 穿甲/侵彻力学的理论建模与分析 [M]. 北京: 科学出版社, 2019.
CHEN Xiao-wei. Theoretical Modeling and Analysis of Armor-Piercing/Intrusion Mechanics [M]. Beijing: Science Press, 2019.
[40] 谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005.
TAN Qing-ming. Quantitative Program Analysis [M]. Hefei: University of Science and Technology of China Press, 2005.
[41] JOHNSON G R. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures [J]. Presented at the Seventh International Symposium on Ballistics, The Hague, The Netherlands, April, 1983, 1983.
[42] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31-48.
[43] 吴子奇. 弹目结合的反舰导弹对目标舰船靶标侵彻毁伤研究 [D], 2019.
WU Zi-qi. Study on the Intrusive Destruction of Target Ship Targets by Combined Ballistic and Visual Anti-Ship Missiles [D], 2019.
[44] 贾宇, 刘彦, 梁晓璐等. 高强度合金钢30CrMnMoRE/30CrMnSi的动态力学性能 [J]. 高压物理学报, 2018, 32(04): 83-9.
JIA Yu, LIU Yan, LIANG Xiao-lu et al. Dynamic mechanical properties of high-strength alloy steel 30CrMnMoRE/30CrMnSi [J]. Journal of High Pressure Physics, 2018, 32(04): 83-9.
[45] 陈刚, 陈忠富, 陶俊林等. 45钢动态塑性本构参量与验证 [J]. 爆炸与冲击, 2005, (05): 69-74.
CHEN Gang, CHEN Zhong-fu, TAO Jun-lin et al. Validation of dynamic plasticity coefficients of 45 steel [J]. Explosion and Shock, 2005, (05): 69-74.
[46] 张庆明, 黄风雷, 周兰庭. 破片贯穿目标等效靶的极限速度 [J]. 兵工学报, 1996, (01): 21-5.
ZHANG Qing-ming, HUANG Feng-lei, ZHOU Lan-`ting. Limiting velocity of fragmentation through target equivalent [J]. Journal of Military Engineering, 1996, (01): 21-5.
[47] 辛甜, 韩庆. 钢破片侵彻靶板弹道极限速度研究 [J]. 科学技术与工程, 2012, 12(02): 264-8.
XIN Tian, HAN Qing. Study on the ballistic limiting velocity of steel fragments penetrating the target plate [J]. Science, Technology and Engineering, 2012, 12(02): 264-8.
[48] VIJAYAN V, HEGDE S, GUPTA N. Deformation and ballistic performance of conical aluminum projectiles impacting thin aluminum targets: Influence of apex angle [J]. J International Journal of Impact Engineering, 2017, 110: 39-46.

PDF(1518 KB)

Accesses

Citation

Detail

段落导航
相关文章

/