竖向涡激振动对大跨度城市轨道专用桥行车性能的影响研究

向活跃1, 王一少1, 蔡佩宏2, 李永乐1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 251-258.

PDF(2059 KB)
PDF(2059 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 251-258.
论文

竖向涡激振动对大跨度城市轨道专用桥行车性能的影响研究

  • 向活跃1,王一少1,蔡佩宏2,李永乐1
作者信息 +

Effect of vertical vortex induced vibration on running performance of a long-span urban rail dedicated bridge

  • XIANG Huoyue1, WANG Yishao1, CAI Peihong2, LI Yongle1
Author information +
文章历史 +

摘要

城市轨道交通桥梁发生涡激振动时不仅会影响行车安全,还有可能造成不良的社会影响。首先建立了考虑涡激振动和轨道几何不平顺影响的风-车-桥系统耦合振动分析模型,以某大跨度城市轨道交通自锚式悬索桥为背景,分析了轨道几何不平顺、列车入桥时刻、列车车速、涡激振动振幅及阶次等因素对行车性能的影响。然后,将涡激振动条件下的列车-桥梁垂向系统简化为单自由度模型,推导了车辆加速度响应与涡激振动幅值间的关系式,给出了该桥涡激振动限值的计算公式。结果表明,列车在桥梁涡激振动条件下上桥时,列车响应总体上随车速、桥梁振动阶次和涡激振动振幅的增加而增加,轨道几何不平顺随机性和列车入桥时刻对列车响应也有一定的影响,总体而言,桥梁竖向涡激振动对列车的行车舒适性影响大。推导的关系式考虑了车辆性能,计算结果与风-车-桥系统耦合振动分析结果基本吻合,可为桥梁涡激振动限值研究提供参考。

Abstract

Vortex induced vibration (VIV) of urban rail transit bridge will not only affect traffic safety, but also cause adverse social impact. Firstly, the coupling vibration analysis model of the wind-vehicle-bridge (WVB) system considering the effect of VIV and track irregularities is established. Take a long-span urban rail transit self-anchored suspension bridge as an example, the effects of track irregularity, the time of train entering the bridge, train speed, amplitude and order of VIV on running performance were analyzed. Then, the train-bridge vertical system under VIV is simplified into a single degree of freedom model. The relationship between vehicle acceleration response and VIV amplitude is derived, and the calculation formula of VIV amplitude limit of the bridge is given. The results show that the train response generally increases with the increase of the train speed, the order of bridge vibration and the amplitude of VIV, and the randomness of track irregularity and the time of train entering the bridge also have a certain influence on the train response. The derived equation takes vehicle performance into account, and the calculated results are in good agreement with the coupled vibration analysis results of WVB system, which can provide reference for the study of VIV amplitude limits of bridges. 

关键词

城市轨道交通专用桥 / 涡激振动 / 耦合振动 / 风-车-桥系统 / 行车安全

Key words

urban rail dedicated bridge / vortex induced vibration / coupled vibration / wind-vehicle-bridge

引用本文

导出引用
向活跃1, 王一少1, 蔡佩宏2, 李永乐1. 竖向涡激振动对大跨度城市轨道专用桥行车性能的影响研究[J]. 振动与冲击, 2024, 43(24): 251-258
XIANG Huoyue1, WANG Yishao1, CAI Peihong2, LI Yongle1. Effect of vertical vortex induced vibration on running performance of a long-span urban rail dedicated bridge[J]. Journal of Vibration and Shock, 2024, 43(24): 251-258

参考文献

[1] 肖海珠,高宗余,何东升,等. 公铁两用斜拉-悬索协作体系桥结构参数研究[J]. 桥梁建设,2020, 50(04):17-22.
XIAO Hai-zhu, GAO Zong-yu, HE Dong-sheng, et al. Parametric study for a rail-cum-road bridge of combined cable-stayed and suspension system[J]. Bridge Construction, 2020, 50(04): 17-22.
[2] 项海帆,葛耀君. 大跨度桥梁抗风技术挑战与基础研究[J]. 中国工程科学,2011,13(09): 8-21.
XIANG Hai-fan, GE Yao-jun. Wind resistance challenges and fundamental research on long‐span bridges[J]. Engineering Science, 2011, 13(09): 8-21.
[3] LARSEN A, ESDAHL S, ANDERSEN JE, et al. Storebælt suspension bridge-vortex shedding excitation and mitigation by guide vanes[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 88:283–296.
[4] GAO D L, DENG Z, YANG W H, et al. Review of the excitation mechanism and aerodynamic flow control of vortex-induced vibration of the main girder for long-span bridges: A vortex-dynamics approach[J]. Journal of Fluids and Structures, 2021, 105:103348.
[5] LI H, LAIMA S J, OU J P, et al. Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements[J]. Engineering Structures, 2011, 33:1894–1907. 
[6] LARSEN A. Aerodynamic aspects of the final design of the 1624m suspension bridge across the Great Belt[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1993, 2(48): 261-285.
[7] LI H, LAIMA S J, ZHANG Q Q, et al. Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2014, 7(124): 54-67.
[8] YU H L, WANG B, ZHANG G Q, et al. Ride comfort assessment of road vehicle running on long-span bridge subjected to vortex-induced vibration[J]. Wind and Structures, 2020, 5(31): 393-402.
[9] ZHANG G Q, XU Y L, WANG B, et al. Turbulence effects on vortex-induced dynamic response of a twin-box bridge and ride comfort of the vehicle[J]. International Journal of Structural Stability and Dynamics, 2023, 23: 16-18.
[10] 朱金,李涵,熊籽跞,等. 大跨度公路悬索桥涡振条件下驾驶员全身振动研究[J]. 土木工程学报,2023,56(08):60-84.
ZHU Jin, LI Hui, XIONG Zi-yue, et al. Evaluation of whole body vibration of vehicle drivers on long-span highway suspension bridge experiencing vortex-induced vibration[J]. Journal of Civil Engineering, 2023, 56(08):60-84.
[11] 朱金,黄旭,熊籽跞,等. 大跨度悬索桥竖弯涡振条件下驾驶员行车视线研究[J]. 西南交通大学学报,2023, 1(58):191-201.
ZHU Jin, HUANG Xu, XIONG Zi-yue, et al. Study on driver’s sight line under vertical vortex-induced vibration of long span suspension bridges [J]. Journal of Southwest Jiaotong University, 2023, 56(08):60-84.
[12] WANG Y F, ZHOU C F, ZONG J F, et al. Evaluation of ride comfort under vortex-induced vibration of long-span bridge[J]. Applied Sciences-Basel, 2023, 13(20);11505.
[13] ZENG G, DAN D H, GUAN H, et al. Online intelligent perception of front blind area of vehicles on a full bridge based on dynamic configuration monitoring of main girders [J]. Sensors, 2022, 19(22);7342.
[14] DAN D H, ZENG G, YU X W, et al. Online Collaborative Perception of Full Bridge Deck Driving Visual of Far Blind Area on Suspension Bridge during Vortex-Induced Vibration [J]. Sensors, 2024, 24(6);1934.
[15] 陈尚烽. 考虑行车安全性的桥梁竖向涡振限值计算[J]. 中外公路,2019,6(39):114-117.
CHEN Shang-feng. Calculation of vertical vortex vibration limit of bridge considering traffic safety [J]. Journal of China and Foreign Highway, 2019, 6(39):114-117.
[16] 陈政清,黄智文. 大跨度桥梁竖弯涡激共振限值的主要影响因素分析[J]. 中国公路学报,2015,28(09): 30-37.
CHEN Zheng-qing, HUANG Zhi-wen. Analysis of main factors influencing allowable magnitude of vertical vortex-induced vibration of long span bridges[J]. China Journal of Highway and Transport, 2015, 28(09): 30-37.
[17] 江智俊. 大跨度桥梁主梁竖向涡激振动振幅限值研究[D]. 长沙:湖南大学, 2022. 
JIANG Zhi-jun. Study on vertical amplitude limits of vortex-induced vibration of main girder of large-span bridges  [D]. Changsha: Hunan University, 2022.
[18] 郭向荣,岳道阔. 基于列车走行性的斜拉桥竖弯涡振振幅限值研究[J]. 铁道科学与工程学报,2023.
GUO Xiang-rong, YUE Dao-kuo. Study on the amplitude limit of cable-stayed bridge vertical bending vortex vibration based on train running performance[J]. Journal of Railway Science and Engineering, 2023.
[19] 翟培佐. 涡激振动状态下大跨度钢桁梁斜拉桥风-车-桥耦合振动研究[D]. 长沙:中南大学,2022. 
ZHAI Pei-zuo. Wind-vehicle-bridge coupled vibration of long-span steel truss cable-stayed bridge under vortex-induced vibration [D]. Changsha: Central South University, 2022.
[20] LIU D J, LI X Z, MEI F L, et al. Effect of vertical vortex-induced vibration of bridge on railway vehicle’s running performance [J]. Vehicle System Dynamics, 2023, 61(5);1432–1447.
[21] 赵会东,陈良江,肖海珠,等. 高速铁路大跨度桥梁涡激共振振幅限值研究[J]. 桥梁建设,2022,52(01): 49-55.
ZHAO Hui-dong, CHEN Liang-jiang, XIAO Hai-zhu, et al. Study on vortex-induced vibration amplitude thresholds of high speed railway long span bridge[J]. Bridge Construction, 2022, 52(01): 49-55.
[22] 李永乐. 风—车—桥系统非线性空间耦合振动研究[D]. 成都:西南交通大学, 2003.
LI Yong-le. Nonlinear three-dimensional coupling vibration of wind-vehicle-bridge system[D]. Chendu: Southwest Jiaotong University, 2003.
[23] 向活跃,唐平,王涛,等.基于子集分裂模拟的车-桥系统极值响应统计[J]. 振动与冲击,2020, 39(05).
XIANG Huo-yue, TANG Ping, WANG Tao, et al. Extreme value response statistics of a vehicle-bridge system based on SS /S method[J]. Vibration and Shock, 2019, 39(05).
[24] 陈政清. 桥梁风工程[M]. 北京: 人民交通出版社, 2005.
CHEN Zheng-qing. Bridge wind engineering[M]. Beijing: People's Communications Press, 2005.

PDF(2059 KB)

127

Accesses

0

Citation

Detail

段落导航
相关文章

/