锯片-冲击锤组合刀头联合破岩特性研究

刘增辉1, 2, 孔春艳1, 2, 吕瑞1, 2, 马正阔1, 2, 魏长赟1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 301-311.

PDF(2900 KB)
PDF(2900 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 301-311.
论文

锯片-冲击锤组合刀头联合破岩特性研究

  • 刘增辉1,2,孔春艳1,2,吕瑞1,2,马正阔1,2,魏长赟1,2
作者信息 +

Characteristics of rock breaking by a saw blade-impact hammer combination cutterhead

  • LIU Zenghui1,2, KONG Chunyan1,2, L Rui1,2, MA Zhengkuo1,2, WEI Changyun1,2
Author information +
文章历史 +

摘要

多功能疏浚船是一种内河疏浚作业的重要船舶,为提高其破碎单轴抗压强度大于20 MPa水下岩石能力,设计了锯片-冲击锤组合刀头,并针对冲击头直径D = 25 mm、切槽深度h = 40 mm、切槽宽度w = 4 mm,自由面距离l1 = 30 mm等主要参数开展了研究。首先进行了自由面条件下单冲击头(质量和高度)和双冲击头(间距)的破岩特性(冲击力、比能耗及裂纹长度)试验研究。随后开展了冲击头破岩数值模拟研究,对其机理进行阐释。结果表明:当岩石没有切槽自由面时,冲击头破岩形式以压缩破坏为主,破坏形态为破碎坑;当岩石存在自由面时,冲击头破岩形式以拉伸破坏为主,裂纹更易扩展,形成X形主裂纹,产生大块碎石。在单冲击头破岩实验中,存在最优冲击能250 J,首次冲击即可形成有效岩石破坏;在双冲击头破岩实验中,存在最佳间距170 mm,使得裂纹贯通时比能耗最小。

Abstract

Multifunctional dredger is an important vessel for inland river dredging. In order to improve its ability to break underwater rocks with uniaxial compressive strength greater than 20 MPa. a saw blade-impact hammer combination cutterhead was designed. The main parameters such as impact head diameter D = 25 mm, notch depth h = 40 mm, notch width w = 4 mm, and free face distance l1 = 30 mm were investigated. Firstly, the experimental investigation of rock breaking characteristics (impact force, specific energy consumption ,and crack length) of single impact head (mass and height) and double impact head (spacing) under free face conditions was carried out. Subsequently, numerical simulations of impact head rock breaking were carried out to elucidate the mechanism. The results show that when the rock has no slotted free face, the form of rock breaking is dominated by compression failure, which is manifested as crater; when the rock has the free face, the form of rock breaking is dominated by tensile failure, and the cracks are more likely to propagate, forming X-shaped main cracks and generating large rock chunks. In the single impact head rock breaking experiments, there exists an optimal impact energy of 250 J, which forms effective rock breaking after the first impact. In dual impact head rock breaking experiments, there exists an optimal spacing of 170 mm, which minimizes the specific energy consumption for cracks penetration.

关键词

冲击锤 / 组合刀头 / 冲击破岩 / 自由面 / 破岩特性

Key words

impact hammer / Combination cutter head / Impact rock-breaking / Free face / Rock-breaking characteristics

引用本文

导出引用
刘增辉1, 2, 孔春艳1, 2, 吕瑞1, 2, 马正阔1, 2, 魏长赟1, 2. 锯片-冲击锤组合刀头联合破岩特性研究[J]. 振动与冲击, 2024, 43(24): 301-311
LIU Zenghui1, 2, KONG Chunyan1, 2, L Rui1, 2, MA Zhengkuo1, 2, WEI Changyun1, 2. Characteristics of rock breaking by a saw blade-impact hammer combination cutterhead[J]. Journal of Vibration and Shock, 2024, 43(24): 301-311

参考文献

[1] 斯庆高娃. 城市内河中绞吸式挖泥船疏浚施工技术研究[J]. 舰船科学技术, 2018, 40(16): 169-171.
SI Qinggaowa. Study on dredging construction technology of suction dredger in urban river [J]. Ship Science and Technology, 2018, 40(16): 169-171.
[2] 王振瑯. 耙吸式挖泥船疏浚系统设计概述[J]. 船舶, 1999(06): 31-38.
WANG Zhenlang. A brief description of the dredge system design of drag suction dredger [J]. Ship & Boat, 1999(06): 31-38.
[3] 蔡苏晋. “水王”挖泥船在浅水河湖疏浚工程中的应用[J].水利建设与管理, 2018, 38(09): 16-19. 
CAI Sujin. Application of “Watermaster” dredger in dredging project of shallow rivers and lakes [J]. Water Conservancy Construction and Management, 2018, 38(09): 16-19. 
[4] WEI C Y, WEI Y, JI Z. Model predictive control for slurry pipeline transportation of a cutter suction dredger [J]. Ocean Engineering, 2021, 227.
[5] 赵健,宁镓. 多功能清淤船及移动式脱水固化站组合施工应用[J]. 港工技术, 2022, 59(05): 91-94. 
ZHAO Jian, NING Jia. Combination of Multifunctional Dredger and Mobile Dewatering & Solidifying Station Applied in Construction [J].Port Engineering Technology,2022, 59(05): 91-94.
[6] 王艳锋,刘建卫. 机械凿岩在疏浚工程中的应用[J]. 水运工程, 2019(06): 207-211. 
WANG Yanfeng, LIU Jianwei, Application of mechanical rock breaking method in dredging project [J]. Port & Waterway Engineering, 2019(06): 207-211.
[7] 韩加新. 绞吸船挖岩及岩料的利用[J]. 水运工程, 2010(07): 49-52+132.
HAN Jiaxin. Rock dredging and reuse of dredged materials [J]. Port & Waterway Engineering, 2010(07): 49-52+132.
[8] 胡伟才,张晓强,郭铭芳等. 装药结构对深水钻孔爆破效果的影响分析[J]. 人民长江, 2019, 50(08): 161-166.
HU Weicai, ZHANG Xiaoqiang, GUO Mingfang, et al. Influence of different charging structure on blasting effect of deep water drilling [J]. Yangtze River, 2019, 50(08): 161-166.
[9] 何钱金. 深水岩石钻孔爆破中震源药柱与乳化炸药配合使用技术[J]. 科技创新与应用, 2018(03): 43-44+46.
HE Qianjin. Technology of using seismic source column with emulsion explosives in deep water rock drilling and blasting [J]. Technology Innovation and Application, 2018(03): 43-44+46.
[10] 束天阳. 内河航道疏浚工程施工技术探析[J]. 黑龙江交通科技, 2020, 43(11): 242-243.
SHU Tianyang. Analysis on Construction Technology of Inland Waterway Dredging Project [J]. Communications Science and Technology Heilongjiang, 2020, 43(11): 242-243.
[11] LIU H Z, YANG L Y, XIE H Z, et al. Mixed-mode I/II dynamic fracture behavior in PMMA driven by stress waves [J]. Archive of Applied Mechanics, 2023, 93(8):  3113-3129.
[12] ZHANG X, XIA Y, Tan Q, et al. Comparison Study on the Rock Cutting Characteristics of Disc Cutter under Free-face-assisted and Conventional Cutting Methods [J].  KSCE Journal of Civil Engineering, 2018, 22(10): 4155-4162.
[13] LIU Z, LIU K, MA Z, et al. Mechanical Responses and Fracture Mechanisms of  Rock with Different Free Surfaces under the Chisel Pick Cutting [J]. Engineering Fracture Mechanics, 2021, 247.
[14] SAADATI M, FORQUIN P, WEDDFELT K, et al. On the Mechanical Behavior of Granite Material With Particular Emphasis on the Influence From Pre-Existing Cracks and Defects [J]. Journal of Testing and Evaluation, 2018, 46(1): 33-45.
[15] CUI J, JIANG Q, LI S J, et al. Numerical Study of Anisotropic Weakening Mechanism and Degree of Non-Persistent Open Joint Set on Rock Strength with Particle Flow Code [J]. Ksce Journal of Civil Engineering, 2020, 24(3): 988-1009.
[16] 李晓照,戚承志,邵珠山. 高渗透压作用脆性岩石宏细观力学本构模型[J]. 岩石力学与工程学报, 2020, 39(S1):2593-2601.
LI Xiaozhao, QI Chengzhi, SHAO Zhushan. Meso-macro mechanical constitutive model under high seepage pressure in brittle rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 39(S1): 2593-2601.
[17] 李根生,廖华林,黄中伟等. 超高压水射流作用下岩石损伤破碎机理[J]. 机械工程学报, 2009,45(10):284-293.
LI Gensheng, LIAO Hualin, HUANG Zhongwei, et al. Rock Damage Mechanisms under Ultra-high Pressure Water Jet Impact [J]. Journal of Mechanical Engineering, 2009, 45(10): 284-293.
[18] SVOREN J, NASCAK L, BARCIK S, et al. Influence of Circular Saw Blade Design on Reducing Energy Consumption of a Circular Saw in the Cutting Process [J]. Applied Sciences-Basel, 2022, 12(3).
[19] DABBAGH A A, GONZáLEZ A S, PEñA A S. Soil erosion by a continuous water jet [J]. Soils and Foundations, 2002, 42(5): 1-13.
[20] CHEN F L, SIORES E, PATEL K. Improving the cut surface qualities using different controlled nozzle oscillation techniques [J]. International Journal of Machine Tools & Manufacture, 2002, 42(6): 717-722.
[21] 赵春红,秦现生. 高压水射流切割技术及其应用[J]. 机床与液压, 2006(02): 1-3.
ZHAO Chunhong, QIN Xiansheng. High pressure Water Jet Cutting Technology and its Application [J]. Machine Tool & Hydraulics, 2006(02): 1-3.
[22] BUYUKSAGIS I S. Effect of cutting mode on the sawability of. granites using segmented circular diamond sawblade [J]. Journal of Materials Processing Technology, 2007, 183(2-3): 399-406.
[23] 徐小荷,余静. 岩石破碎学[M]. 北京:煤炭工业出版社,   1984.
XU Xiaohe, YU Jing. Rock Fragmentation theory[M]. Beijing: China Coal Industry Publishing House, 1984.
[24] 伍骏,赵锦荣,褚伟成等. 深水硬岩机械破碎冲击锤的作业辅助系统设计[J]. 凿岩机械气动工具, 2022, 48(01): 12-22.
WU Jun, ZHAO Jinrong, CHU Weicheng et al. Design of Auxiliary System of Hydraulic Impact Hammer for Mechanical Crushing of Deep Water Hard Rock [J]. Rock Drilling Machinery & Pneumatic Tools, 2022, 48(01): 12-22
[25] 谢世勇,卢花,赵伏军. 动静组合载荷作用下岩石破碎损伤断裂力学分析[J]. 金属矿山, 2008(11): 20-24.
XIE Shiyong, LU Hua, ZHAO Fujun. Mechanical Analysis of the Damage and Fracture of Rock Fragmentation Under Combined Dynamic and Static Loads [J]. Metal Mine, 2008(11): 20-24.
[26] 刘增辉,马正阔,魏长赟等. 一种组合破岩刀头结构:中国, CN112064709B[P], 2022-06-24.
LIU Zenghui, MA Zhengkuo, WEI Changyun, et al. A combination rock breaking cutter head structure: China, CN112064709B[P], 2022-06-24.
[27] NING Y J, AN X M, MA G W. Footwall slope stability analysis with the numerical manifold method [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 964-75.
[28] MUNJIZA A A. The combined finite-discrete element method [M]. John Wiley & Sons, 2004.
[29] YANG D, HE X, YI S, et al. An improved ordinary state-based peridynamic model for cohesive crack growth in quasi-brittle materials [J]. International Journal of Mechanical Sciences, 2019, 153-154: 402-15.
[30] YAO Y. Linear Elastic and Cohesive Fracture Analysis to Model Hydraulic Fracture in Brittle and Ductile Rocks [J]. Rock Mechanics and Rock Engineering, 2011, 45(3): 375-87.
[31] 程树范,高睿,曾亚武,等. 冲击作用下煤岩动态破坏机理的FDEM模拟研究[J]. 振动与冲击, 2022, 41(19): 136-143.
CHENG Shufan, GAO Rui, ZENG Yawu, et al. FDEM simulation of dynamic failure mechanism of coal rock under impact [J]. Journal of Vibration and Shock, 2022, 41(19): 136-143. 

PDF(2900 KB)

Accesses

Citation

Detail

段落导航
相关文章

/