一种基于地磁分量的DMC姿态传感器误差补偿方法

贡益明1, 李春2, 商飞3, 孔德仁3, 袁耀东2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 68-76.

PDF(1714 KB)
PDF(1714 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 68-76.
论文

一种基于地磁分量的DMC姿态传感器误差补偿方法

  • 贡益明1,李春2,商飞3,孔德仁3,袁耀东2
作者信息 +

An error compensation method for DMC attitude sensors based on geomagnetic components

  • GONG Yiming1,LI Chun2,SHANG Fei3,KONG Deren3,YUAN Yaodong2
Author information +
文章历史 +

摘要

为了提升嵌入式综合光电瞄准系统的测量精度,对系统中数字磁罗盘这一姿态传感器所产生的误差进行补偿研究。在深入分析全姿态误差补偿原理的基础上,针对其补偿局限性提出了一种基于地磁分量的误差优化补偿方法。构建了新的误差补偿框架,通过粒子群搜索算法对非线性因子进行估算。设计了磁罗盘误差补偿实验。实验证明,基于地磁分量的误差优化补偿方法有效提升了航向测量精度,其提升幅度为10%~20%。该方法在现场校正数字磁罗盘过程中具有较大的应用价值。

Abstract

In order to improve the measurement accuracy of embedded integrated optoelectronic aiming system, I have studied the error compensation method of the key component digital magnetic compass in the system. On the basis of in-depth analysis of the principle of full attitude error compensation, a method of error optimization compensation based on geomagnetic components is proposed to address its compensation limitations. A new error compensation framework has been constructed to estimate nonlinear factors through particle swarm search algorithm. I designed a magnetic compass error compensation experiment. Experimental results have shown that the error optimization compensation method based on geomagnetic components effectively improves the accuracy of heading measurement, with an improvement range of 10% to 20%. This method has significant application value in on-site calibration of digital magnetic compasses.

关键词

光电瞄准系统 / 数字磁罗盘 / 补偿模型 / 地磁分量 / 粒子群算法

Key words

photoelectric aiming system / digital magnetic compass / compensation model / geomagnetic field component / particle swarm optimization

引用本文

导出引用
贡益明1, 李春2, 商飞3, 孔德仁3, 袁耀东2. 一种基于地磁分量的DMC姿态传感器误差补偿方法[J]. 振动与冲击, 2024, 43(24): 68-76
GONG Yiming1, LI Chun2, SHANG Fei3, KONG Deren3, YUAN Yaodong2. An error compensation method for DMC attitude sensors based on geomagnetic components[J]. Journal of Vibration and Shock, 2024, 43(24): 68-76

参考文献

[1] 郑万里,杨萍,闫少强,等. 军事伪装技术研究现状及发展趋势分析[J]. 现代防御技术,2022,50(01):81-86.
ZHENG Wanli,YANG Ping,YAN Shaoqiang,et al. Analysis on the research status and development trend of military camouflage technology [J]. Modern defence technology,2022,50(01):81-86.
[2] 张卓. 光电瞄具快速校准与修正方法研究[D]. 湖南:国防科技大学,2022.
[3] 仲维彬. 舰载光电跟踪与火控系统发展[J]. 应用光学,2022,43(04):24-29.
ZHONG Weibin. Development of ship-borne electro-optical tracking and fire control system [J]. Journal of applied optics,2022,43(04):24-29.
[4] 于洪有,宋宏伟,张宇峰,等. 轻武器射表实战应用方法解析[J]. 兵工自动化,2023,42(11):18-22.
YU Hongyou,SONG Hongwei,ZHANG Yufeng,et al. Analysis of application method of small arms firing table in actual combat [J]. Ordnance industry automation,2023,42(11):18-22.
[5] 袁冠,高博,宋殿义,等. 基于Delphi-AHP的轻武器训练安全风险因素分析[J]. 火力与指挥控制,2024,49(02):173-179.
YUAN Guan,GAO Bo,SONG Dianyi,et al. Analysis of safety risk factors of light weapons training based on delphi-AHP [J]. Fire control and command control,2024,49(02):173-179.
[6] 朱付涛. 航姿参考系统的姿态估计方法研究[J]. 电子测量与仪器学报,2023,37(06):240-246.
ZHU Futao. Research of orientation determination method in AHRS [J]. Journal of electronic measurement and instrument,2023,37(06): 240-246.
[7] 白雪,姜庆,刘有彬,等. 基于磁电阻传感器的电子罗盘研制[J]. 磁性材料及器件,2022,53(03):86-91.
BAI Xue,JIANG Qing,LIU Youbin,et al. Development of electronic compass based on magnetoresistive sensors [J]. Journal of magnetic materials and devices,2022,53(03):86-91.
[8] PARK J Y,SHIN S C,CHOI D G,et al. LOS stabilization Controller Design for EOTS(Electro-Optic Targeting System) with Modified LQT and DOB(Disturbance Observer)[J]. Journal of Korean Institute of Intelligent Systems,2019,29(06): 437-444.
[9] 路辉,张超,李崇辉,等. 一种基于抗差M估计的电子罗盘航向误差补偿算法[J]. 测绘与空间地理信息,2023,46(09):51-55.
LU Hui,ZHANG Chao,LI Chonghui,et al. An electronic compass heading error compensation algorithm based on robust m-estimation [J]. Geomatics and spatial information technology,2023,46(09):51-55.
[10] 葛翰林,张一鸣,张晨浩,等. 高温磁通门传感器设计与实现[J]. 仪表技术与传感器,2023,(11):23-28.
GE Hanlin,ZHANG Yiming,ZHANG Chenghao,et al. Design and implementation of high temperature fluxgate sensor [J]. Instrument technique and sensor,2023,(11):23-28.
[11] 刘林,楼然苗. 简易的磁罗经数字转换器的设计[J]. 中国水运,2021,21(05):52-53.
LIU Lin,LOU Ranmiao. Design of a simple magnetic compass digital converter [J]. China water transport,2021,21(05):52-53.
[12] 温盛军,李亮,喻俊,等. 迟滞与蠕变耦合压电系统的建模及补偿方法[J]. 振动与冲击,2023,42(07):25-32.
WEN Shengjun,LI Liang,YU Jun,et al. Modeling and compensation method of hysteresis-creep coupled piezoelectric system [J]. Journal of vibration and shock,2023,42(07):25-32.
[13] 刘林. 基于C8051F350的磁罗经数字转换器设计与实现[D]. 浙江:浙江海洋大学,2022.
[14] 伍东凌,邓超凡. 舰载直升机中磁罗盘方位角测量误差分析[J]. 数字海洋与水下攻防,2023,6(05):569-574.
WU Dongling,DENG Chaofan. Analysis of azimuth measurement error of magnetic compass in shipborne helicopter [J]. Digital ocean and underwater warfare,2023,6(05):569-574.
[15] KAI C L. Multi-geomagnetic-component assisted localization algorithm for hypersonic vehicles [J]. Journal of Zhejiang University:science A(Applied Physics & Engineering),2021,22(05):357-368.
[16] 贺云波,崔尚增. 永磁直线电机的滑模控制与非线性效应补偿[J]. 计算机仿真,2021,38(04):172-176.
HE Yunbo,CUI Shangzeng. Sliding mode control and nonlinear effect compensation of permanent magnet linear motor [J]. Computer simulation,2021,38(04):172-176.
[17] 孙澎涛,陈立强,孙贵成,等. 两种地磁场模型与地磁台站年均值一致性分析[J]. 山西地震,2021,(02):15-20.
SUN Pengtao,CHEN Liqiang,SUN Guicheng,et al. Analysis of consistency between two geomagnetic field models and annual mean values of geomagnetic stations [J]. Shanxi earthquake,2021,(02):15-20.
[18] 鲍广建,丁立波,张合. 弹丸姿态解算初始地磁分量误差分析[J]. 兵器装备工程学报,2019,40(01):74-77.
BAO Guangjian,DING Libo,ZHANG He. Error analysis of initial geomagnetic component in ammunition attitude angle solution [J]. Journal of ordnance equipment engineering,2019,40(01):74-77.
[19] 周思远,段颖,尤伟,等. 地磁三分量测量中磁偏角仪器差的改正问题[J]. 华南地震,2023,43(02):97-103.
ZHOU Siyuan,DUAN Yin,YOU Wei,et al. Correction of instrument deviation in geomagnetic three component measurement [J]. South china earthquake,2023,43(02):97-103.
[20] 刘建娟,吴豪然,姬淼鑫,等. 多策略改进粒子群优化AGV模糊PID控制[J]. 机床与液压,2023,11(03):1-10.
LIU Jianjuan,WU Haoran,JI Miaoxin,et al. Multi strategy improved particle swarm optimization AGV fuzzy PID control [J]. Machine tool and hydraulics,2023,11(03):1-10.
[21] 薛文. 一种改进惯性权重的粒子群优化算法[J]. 现代信息科技,2023,7(20):88-91.
XUE Wen. Particle swarm optimization algorithm with improved inertia weight [J]. Modern information technology,2023,7(20):88-91.
[22] 米洒洒. 面向直升机地磁测量系统的航磁补偿算法研究[D]. 湖北:华中科技大学,2022.
[23] BRANKO L,ZORAN B. Digital Magnetic compass integration with stationary,land-based electro-optical multi-sensor surveillance system [J]. Sensors,2019:4331-4332.
[24] WEI Y Q,WAN B N,SHEN B. An alternating continuous integration system for magnetic measurements for experimental advanced superconducting tokamak [J]. The review of scientific instruments,2023,11:1-9.
[25] 王涛,浩杰敦,孟丽岩,等. 考虑物理加载时滞的力修正迭代混合试验方法[J]. 振动与冲击,2023,42(03):56-64.
WANG Tao,HAO Jiedun,MENG Liyan,et al. Force correction iterative hybrid test method considering physical loading time delay [J]. Journal of vibration and shock,2023,42(03):56-64.
[26] 杜雯,黄河,周军. 地磁测量卫星的矢量磁场在轨标定算法仿真 [J]. 空间科学学报,2022,42(06):1193-1203.
DU Wen,HUANG He,ZHOU Jun. Simulation of vector magnetic field in-orbit calibration algorithm for geomagnetic survey satellite [J]. Chinese journal of space science,2022,42(06):1193-1203.
[27] 任松涛. 基于DSP的船舶航海仪器故障诊断[J]. 舰船科学技术,2023,45(24):196-199.
REN Songtao. Fault diagnosis of marine instruments based on DSP [J]. Ship science and technology,2023,45(24):196-199.
[28] 缪玲娟,吴子昊,周志强,等. 基于改进OPTICS算法的磁罗盘椭圆拟合误差补偿方法[J]. 中国惯性技术学报,2022,30(02):174-180.
MIAO Lingjuan,WU Zihao,ZHOU Zhiqiang,et al. Ellipse fitting error compensation method of magnetic compass based on improved OPTICS algorithm [J]. Journal of chinese inertial technology,2022,30(02):174-180.

PDF(1714 KB)

122

Accesses

0

Citation

Detail

段落导航
相关文章

/