
床面干涉下防冲刷潮流能水轮机尾流特性及影响研究
苏纯浩1, 赵振宙1, 刘岩2, 刘一格2, Ali Kashif2, 刘惠文1, 魏赏赏1
振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 77-83.
床面干涉下防冲刷潮流能水轮机尾流特性及影响研究
A study of characteristics and effects of scour-proof tidal current energy turbine wake flow under bed interference
潮流能水轮机 / 局部冲刷 / 尾流亏损 / 剪切应力 / {{custom_keyword}} /
tidal current turbine / local scour / velocity loss of wake / shear stress; {{custom_keyword}} /
[1] Bhattacharya S. Challenges in design of foundations for offshore wind turbines[J]. Engineering & Technology Reference , 2014, 1(1): 922.
[2] 卢光坤, 陈旭光, 杜文博等. 考虑桩-土作用及冲刷影响的海上风电结构损伤检测研究 [J]. 振动与冲击, 2023, 42 (01): 105-114.
Lu Guangkun, Chen Xuguang, Du Wenbo et al. Damage detection of offshore wind power structures considering pile-soil interaction and scour [J]. Journal of Vibration and Shock, 2023, 42 (01): 105-114.
[3] 代浩. 冲刷作用下钢管桩动力特性研究[D]. 南京: 东南大学, 2017.
Dai Hao. Research on dynamic characteristics of steel pipe pile under scouring [D]. Nanjing: Southeast University, 2017.
[4] 梁发云, 王琛, 贾承岳等. 冲刷深度对简支桥模态参数影响的模型试验 [J]. 振动与冲击, 2016, 35 (14): 145-150.
Liang Fayun, Wang Chen, Jia Chengyue et al. Model test on the influence of scour depth on modal parameters of simply supported bridge [J]. Journal of Vibration and Shock, 2016, 35 (14): 145-150.
[5] 张博杰. 水流作用下海上风机桩式基础局部冲刷三维数值模拟研究[D]. 天津: 天津大学, 2012.
B.J. Zhang. Three-dimensional numerical simulation of local scouring of pile foundation for offshore wind turbine under water flow [D]. Tianjin: Tianjin University, 2012.
[6] Wei W, Malekjafarian A, Salauddin M. Scour Protection Measures for Offshore Wind Turbines: A Systematic Literature Review on Recent Developments[J]. Energies, 2024, 17(5): 1068.
[7] Matutano C, Negro V, López-Gutiérrez J S, et al. Design of scour protection systems in offshore wind farms[J]. Journal of Energy Resources Technology, 2015, 137(5): 051204.
[8] Fazeres-Ferradosa T, Taveira-Pinto F, Reis M T, et al. Physical modelling of dynamic scour protections: Analysis of the Damage Number[C]//Proceedings of the Institution of Civil Engineers-Maritime Engineering. Thomas Telford Ltd, 2018, 171(1): 11-24.
[9] OuYang H, Dai G, Gao L, et al. Local scour characteristics of monopile foundation and scour protection of cement-improved soil in marine environment-Laboratory and site investigation[J]. Ocean Engineering, 2022, 255: 111443.
[10] Tang Z, Melville B, Shamseldin A, et al. Experimental study of collar protection for local scour reduction around offshore wind turbine monopile foundations[J]. Coastal Engineering, 2023, 183: 104324.
[11] Li H, Qiu X, Yan S, et al. Numerical investigation on the influence of a spoiler structure for local scour protection[J]. Applied Ocean Research, 2023, 138: 103675.
[12] Li J, Lian J, Guo Y, et al. Numerical study on scour protection effect of monopile foundation based on disturbance structure[J]. Ocean Engineering, 2022, 248: 110856.
[13] 张亚超. 水平轴潮流能发电机尾流效应的实验研究[D]. 杭州: 浙江大学, 2014.
Zhang Yachao. Experimental study of wake effect of horizontal axis tidal current energy generator [D]. Hangzhou: Zhejiang University, 2014.
[14] Myers L E, Bahaj A S. Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators[J]. Ocean engineering, 2010, 37(2-3): 218-227.
[15] Zhang Y, Zhang J, Zheng Y, et al. Experimental analysis and evaluation of the numerical prediction of wake characteristics of tidal stream turbine[J]. Energies, 2017, 10(12): 2057.
[16] Aghsaee P, Markfort C D. Effects of flow depth variations on the wake recovery behind a horizontal-axis hydrokinetic in-stream turbine[J]. Renewable energy, 2018, 125: 620-629.
[17] Zhang Z, Zhang Y, Zhang J, et al. Experimental study of the wake homogeneity evolution behind a horizontal axis tidal stream turbine[J]. Applied Ocean Research, 2021, 111: 102644.
[18] Batten W M J, Bahaj A S, Molland A F, et al. The prediction of the hydrodynamic performance of marine current turbines[J]. Renewable energy, 2008, 33(5): 1085-1096.
[19] De Vaal J B, Hansen M O L, Moan T. Effect of wind turbine surge motion on rotor thrust and induced velocity[J]. Wind Energy, 2014, 17(1): 105-121.
/
〈 |
|
〉 |