基于无线中继Wi-Fi的齿轮多维测试系统开发及应用

熊明健, 刘怀举, 吴吉展, 陈泰民, 闫新如, 陈进筱

振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 84-92.

PDF(2397 KB)
PDF(2397 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 84-92.
论文

基于无线中继Wi-Fi的齿轮多维测试系统开发及应用

  • 熊明健,刘怀举,吴吉展,陈泰民,闫新如,陈进筱
作者信息 +

A multi-dimensional gear testing system based on wireless Wi-Fi relay development and application

  • XIONG Mingjian,LIU Huaiju,WU Jizhan,CHEN Taimin,YAN Xinru,CHEN Jinxiao
Author information +
文章历史 +

摘要

齿轮温度、应力、振动等信号是评估齿轮运行状态的重要参数,也是评价齿轮服役性能的重要数据,实现齿轮实时多维信号监测对保证齿轮装备安全运行尤为重要。基于无线中继Wi-Fi网络开发了齿轮多维信号测试系统,无需改变箱体结构即可实时传输信号,并通过集成化设计实现了齿轮温度、应力和振动多维信号的实时采集,并在齿轮性能试验中验证。测试装置的温度、应力和振动测试范围分别为0~150 ℃、0~20000 με和±40 g;在FZG齿轮试验台上的测试应用表明,测试系统可获取各载荷级下齿轮多维信号的变化情况,揭示服役过程中的信号特征与失效之间的规律,相较于传统拆箱式胶合判定方法,试验效率提升50%。

Abstract

The temperature, stress, vibration, and other signals serve as crucial parameters assessing and evaluating the operational status and performance of gears. Real-time multidimensional signal monitoring is crucial to ensuring the safe operation of gear equipment. A gear multi-dimensional signal testing system was developed based on wireless relay Wi-Fi network, enabling real-time signal transmission without modifying the gearbox structure. The integrated design allows real-time acquisition of gear temperature, stress, and vibration signals. This system has been validated through gear performance experiments. The temperature, stress, and vibration test range of the testing device are 0 to 150 °C, 0 to 20000 με (microstrain), and ±40 g, respectively. The testing system on the FZG gear test rig effectively captures changes in multi-dimensional gear signals under different load stages, revealing patterns in signal characteristics and eventual failure throughout service. Compared to traditional disassembly-based adhesive judgment methods, testing efficiency has increased by 50%.

关键词

齿轮传动 / 多维信号 / 无线中继传输 / 测试装置 / 胶合试验

Key words

Gear transmission / Multidimensional signal / Wireless relay transmission / Testing device / scuffing test

引用本文

导出引用
熊明健, 刘怀举, 吴吉展, 陈泰民, 闫新如, 陈进筱. 基于无线中继Wi-Fi的齿轮多维测试系统开发及应用[J]. 振动与冲击, 2024, 43(24): 84-92
XIONG Mingjian, LIU Huaiju, WU Jizhan, CHEN Taimin, YAN Xinru, CHEN Jinxiao. A multi-dimensional gear testing system based on wireless Wi-Fi relay development and application[J]. Journal of Vibration and Shock, 2024, 43(24): 84-92

参考文献

[1] Wu J, Wei P, Liu G, et al. A comprehensive evaluation of DLC coating on gear bending fatigue, contact fatigue, and scuffing performance[J]. Wear, 2024, 536: 205177.
[2] Hu M, Wang H, Wei P, et al. Multi-objective optimization of a co-rotating twin-screw gear transmission system based on heuristic search[J]. Journal of Mechanical Science and Technology, 2023, 37(11): 5831-5841.
[3] Wu J, Chen K, Zhang P, et al. Effects of peening velocity and coverage on peen forming[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023: 09544089231207086.
[4] Touret T, Changenet C, Ville F, et al. On the use of temperature for online condition monitoring of geared systems–A review[J]. Mechanical Systems and Signal Processing, 2018, 101: 197-210.
[5] Zhang X, Niu H, Hou C, et al. Tooth faults detection of planetary gearboxes based on tooth root strain signal of ring gear[J]. Measurement, 2021, 170: 108685.
[6] Feng K, Ji J C, Ni Q, et al. A review of vibration-based gear wear monitoring and prediction techniques[J]. Mechanical Systems and Signal Processing, 2023, 182: 109605.
[7] 刘思辰, 杨飞然, 杨军. 基于多传感器融合的刀具剩余寿命预测[J]. 振动与冲击. 2021, 40(17): 47-54.
LIU Sichen, YANG Feiran, YANG Jun. Tool residual life prediction based on multi-sensor fusion[J]. Journal of Vibration and Shock. 2021, 40(17): 47-54.
[8] Chen T, Zhu C, Liu H, et al. Simulation and experiment of carburized gear scuffing under oil jet lubrication[J]. Engineering Failure Analysis, 2022, 139: 106406.
[9] Raghuwanshi N K, Parey A. Experimental measurement of gear mesh stiffness of cracked spur gear by strain gauge technique[J]. Measurement, 2016, 86: 266-275.
[10] 闫新如, 魏沛堂, 吴吉展, 等. 齿轮动态应力无线测试系统开发及应用[J]. 国外电子测量技术. 2023, 42(10): 97-105.
YAN Xinru, WEI Peitang, WU Jizhan, et al. Development and application of wireless test system for gear dynamic stress[J]. Foreign Electronic Measurement Technology. 2023, 42(10): 97-105.
[11] Qu Y, Hong L, Jiang X, et al. Experimental study of dynamic strain for gear tooth using fiber Bragg gratings and piezoelectric strain sensors[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(21): 3992-4003.
[12] 吴双峰, 李锦花, 王旭华, 等. 齿轮动应力及温度测量在机匣故障中的应用[J]. 航空科学技术. 2020, 31(08): 27-35.
WU Shuangfeng, LI Jinhua, WANG Xuhua, et al. Application of gear dynamic stress and temperature measurement in casing failure[J]. Aeronautical Science and Technology. 2020, 31(08): 27-35.
[13] Wang W, Kanneg D. An integrated classifier for gear system monitoring[J]. Mechanical Systems and Signal Processing, 2008, 23(4): 1298-1312.
[14] Soualhi M, Nguyen K T P, Soualhi A, et al. Health monitoring of bearing and gear faults by using a new health indicator extracted from current signals[J]. Measurement, 2019, 141: 37-51.
[15] Crivelli D, Mccrory J, Miccoli S, et al. Gear tooth root fatigue test monitoring with continuous acoustic emission: Advanced signal processing techniques for detection of incipient failure[J]. Structural Health Monitoring, 2018, 17(3): 423-433.
[16] Feng P, Borghesani P, Chang H, et al. Monitoring gear surface degradation using cyclostationarity of acoustic emission[J]. Mechanical Systems and Signal Processing, 2019, 131: 199-221.
[17] Tan C K, Irving P, Mba D. A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 208-233.
[18] Loutas T H, Roulias D, Pauly E, et al. The combined use of vibration, acoustic emission and oil debris on-line monitoring towards a more effective condition monitoring of rotating machinery[J]. Mechanical Systems and Signal Processing, 2011, 25(4): 1339-1352.
[19] Kattelus J, Miettinen J, Lehtovaara A. Detection of gear pitting failure progression with on-line particle monitoring[J]. Tribology International, 2018, 118: 458-464.
[20] Peng Z. An integrated intelligence system for wear debris analysis [J]. Wear, 2002, 252(9-10): 730-743.
[21] Li Z, Yan X. Study on data fusion of multi-dimensional sensors for health monitoring of rolling bearings[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2013, 55(3): 147-151.
[22] Esfahani E T, Wang S, Sundararajan V. Multisensor wireless system for eccentricity and bearing fault detection in induction motors[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3): 818-826.
[23] Li W, Zhai P, Tian J, et al. Thermal analysis of helical gear transmission system considering machining and installation error[J]. International Journal of Mechanical Sciences, 2018, 149: 1-17.
[24] Navet P, Changenet C, Ville F, et al. Thermal modeling of the FZG test Rig: application to starved lubrication conditions[J]. Tribology Transactions, 2020, 63(6): 1135-1146.
[25] 王方哲, 朱永生, 闫柯, 等. 滚动轴承内圈温度无线监测技术[J]. 机械工程学报. 2018, 54(22): 8-14.
WANG Fangzhe, ZHU Yongsheng, YAN Ke, et al. Wireless monitoring technology of rolling bearing inner ring temperature[J]. Journal of Mechanical Engineering. 2018, 54(22): 8-14.
[26] 张明皓, 陈希有, 牟宪民, 等. 旋转物体上电子设备无线供电技术研究[J]. 电工电能新技术. 2020, 39(7): 54-61.
ZHANG Minghao, CHEN Xiyou, MOU Xianming, et al. Research on wireless power supply technology of electronic equipment on rotating objects[J]. Advanced Technology of Electrical Engineering and Energy. 2020, 39(7): 54-61.
[27] Lu L, He Y, Wang T, et al. Wind turbine planetary gearbox fault diagnosis based on self-powered wireless sensor and deep learning approach[J]. IEEE Access, 2019, 7: 119430-119442.
[28] Sinitsin V V, Shestakov A L. Wireless acceleration sensor of moving elements for condition monitoring of mechanisms[J]. Measurement Science and Technology, 2017, 28(9): 094002.
[29] Feng G, Gu J, Zhen D, et al. Implementation of envelope analysis on a wireless condition monitoring system for bearing fault diagnosis[J]. International Journal of Automation and Computing, 2015, 12(1): 14-24.
[30] Jaber A A, Bicker R. Design of a wireless sensor node for vibration monitoring of industrial machinery[J]. International Journal of Electrical and Computer Engineering, 2016, 6(2): 639-653.
[31] Liu J, Ma C, Gui H, et al. Geometric-thermal error control system for gear profile grinding machine[J]. Advanced Engineering Informatics, 2022, 52: 101618.
[32] Zhang Y, Wu X, Lei Y, et al. Self-powered wireless condition monitoring for rotating machinery[J]. IEEE Internet of Things Journal, 2023, 11: 3095-3107.
[33] Huang L, Chang J. Vibration characterization and fault diagnosis of a planetary gearbox with a wireless embedded sensor[J]. Applied Sciences, 2023, 13(2): 729.
[34] 曾超, 汤宝平, 肖鑫, 等. 低功耗机械振动无线传感器网络节点结构设计[J]. 振动与冲击. 2017, 36(14): 33-37+65.
ZENG Cao, TANG Baoping, XIAO Xin, et al. Low power node architecture design for mechanical vibration wireless sensor networks[J]. Journal of Vibration and Shock. 2017, 36(14): 33-37+65.
[35] GB/Z 13672-2022. 齿轮胶合承载能力试验方法[S]. 北京: 中国标准出版社, 2022.
[36] Chen T, Wei P, Zhu C, et al. Experimental investigation of gear scuffing for various tooth surface treatments[J]. Tribology Transactions, 2023, 66(1): 35-46.
[37] Patil S S, Karuppanan S, Atanasovska I. Experimental measurement of strain and stress state at the contacting helical gear pairs[J]. Measurement, 2016, 82: 313-322.
[38] Stander C J, Heyns P S, Schoombie W. Using vibration monitoring for local fault detection on gears operating under fluctuating load conditions[J]. Mechanical Systems and Signal Processing, 2002, 16(6): 1005-1024.
[39] Li H, Liu J, Ma J, et al. Effect of the radial support stiffness of the ring gear on the vibrations for a planetary gear system[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2020, 39(4): 1024-1038.

PDF(2397 KB)

Accesses

Citation

Detail

段落导航
相关文章

/