具有多个次线性中立项的二阶非线性微分方程的振动性

曾云辉1, 孙文杰2, 王益林1, 罗李平1, 俞元洪3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 93-99.

PDF(1156 KB)
PDF(1156 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (24) : 93-99.
论文

具有多个次线性中立项的二阶非线性微分方程的振动性

  • 曾云辉1,孙文杰2,王益林1,罗李平1,俞元洪3
作者信息 +

Oscillation of second order nonlinear differential equations with several sub-linear neutral terms

  • ZENG Yunhui1,SUN Wenjie2,WANG Yilin1,LUO Liping1,YU Yuanhong3
Author information +
文章历史 +

摘要

本文给出一类具有多个次线性中立项的二阶微分方程一切解振动的若干新的充分条件。我们的结果不仅推广了经典的振动定理,而且改进和概括了最近文献中的振动结果,为说明所得结果的重要性,我们也给出了相应的例子。

Abstract

Some news sufficient conditions for oscillation of all solutions of a class of second order differential equations with several sub-linear neutral terms are given. Our results not only extend several classical oscillation theorems but also improve and generalize those reported in the literature, recently. Examples are included to illustrate the importance of the results obtained.

关键词

中立型微分方程 / 次线性中立项 / 振动准则

Key words

neutral differential equation / sub-linear neutral term / oscillation criterion

引用本文

导出引用
曾云辉1, 孙文杰2, 王益林1, 罗李平1, 俞元洪3. 具有多个次线性中立项的二阶非线性微分方程的振动性[J]. 振动与冲击, 2024, 43(24): 93-99
ZENG Yunhui1, SUN Wenjie2, WANG Yilin1, LUO Liping1, YU Yuanhong3. Oscillation of second order nonlinear differential equations with several sub-linear neutral terms[J]. Journal of Vibration and Shock, 2024, 43(24): 93-99

参考文献

[1] Hale J K, Theory of Functional Differential Equations[M]. Springer-Verlag, New York, 1977.
[2] Wu Y Z, Yu Y H, Xiao J S, Oscillation of second-order Emden-fowler neutral delay differential equations[J]. Electronic Journal of Differential Equations, 2018,159:1-15.
[3] Leighton W., The detection of the oscillation of a second order linear differential equations[J]. Duke Math J. 1950,17:57-62.
[4] Tamlivanan S, Thandapani E, Dzurina j, Oscillation of second-order nonlinear differential Equations with sub-linear neutral term[J].Journal of Difference Equations & Applications,2017,9:29-35.
[5] Sun Y G, Meng F W, Note on the paper of Dzurina and Stavroulakis[J]. Applied Mathematics and Computation , 2006,174:1634-1341.
[6] Kusano T, Wang J, Oscillation properties of half-linear functional-differential equations of the second order[J]. Hiroshima Mathematical Journal, 1995,25:371-385.
[7] Chatzarakis G E, Jadlovska I, Improved oscillation results for second-order half-linear delay differential equations[J]. Hacettepe Journal of Mathematics and Statistics,2019,48:170-179.
[8] Jadlovska I, Dzurina J, Kneser-type oscillation criteria for second order half-linear delay differential equations[J]. Applied Mathematics and Computation ,2020,380:125289.
[9] Dzurina J, Thandapani E, Baculikova B, Dharuman C, and Prabaharan N, Oscillation of second-order nonlinear differential Equations with several sublinear neutral terms[J]. Nonlinear Dynamics & System Theory,2019,19: 124-132.
[10] Santra S S, Bazighifan O, Postolache M, New conditions for the oscillation of second-order differential equations with sublinear neutral terms[J]. Mathematics 2021,9:1159.
[11] Santra S S, Bazighifan O, Ahamad H, chu Y M, Second-order differential equations: oscillation theorems and applications[J].Mathematical Problems in Engineering: Theory, Methods and Applications,2020, ID8820066, 6pages.
[12] Santra S S, Ghost T, Bazighifan O, Explicit criteria for the oscillation of second-order differential equations with several sub-linear neutral coefficients[J]. Advances in Difference Equations, 2020, 2020:643.
[13] Wu Y Z, Yu Y H, X Oscillatory behaviour of a class of second-order Emder-fowler differential equations with a sublinear neutral term[J].Mathematics in Applied Sciences and Engineering, 2023,31:2246098.
[14] Erbe L H, Kong Q, Zhang B G, Oscillation Theory For Functional Differential Equations[M]. Marcel Dekker, New York,1995.
Agarwal R P, Shieh S L, Yeh C C, Oscillation criteria for second-order retarded differential equations[J]. Math Comput Model,1997, 26(4):1-11.
[15] Prabaharan N, Dharuman C P, Graef J R, Thandapani E, New oscillation criteria for second order quasi-linear differential equations with sub-linear neutral term[J].Applied Mathematics E-Notes, 2019, 19:563-574.
[16] Baculikova B, Dzurina J, Oscillation theorems for second order nonlinear neutral differential equations[J].Computers & Mathematics with Applications,2011,62:4472-4478.
[17] Agarwal R P, Bohner M, Li T X, zhang C H, Oscillation of second-order differential equations with a sublinear neutral term[J].Carpathian Journal Of Mathematics, 2014,30:1-6.
[18] 孙喜东,俞元洪. 具有次线性中立项的Emden-Fowler中立型微分方程的振动性[J]. 应用数学学报, 2020, 43:771-780.
SUN Xidong,YU Yuanhong. Oscillation of Emden-Fowler 
neutral differential equation with sublinear term[J]. Acta Mathematicae Applicatae Sinica, 2020,43( 5) :771-780.
[19] Grace S R, Dzurina J, Jadlovska I, Li T X, An improved approach for studying oscillation of Second-order neutral delay differential equations[J].Journal of Inequalities and Applications,2018, 2018(1):193.
[20] Moaaz Z, New criteria for oscillation of nonlinear neutral differential equations[J]. Advances in Difference Equations, 2019, 2019:484.
[21] Agarwal R P, Bohner M, Li W T, Nonoscillation and oscillation: Theory of Functional Differential Equation[M]. Marcel Dekker, New York, 2004.

PDF(1156 KB)

114

Accesses

0

Citation

Detail

段落导航
相关文章

/