材料参数对液弹阻尼器动态特性的影响

冯林兆1,2,康丽霞3,赖亮庆1,2,陈高升1,2,赵晓健1,2,苏正涛2,刘嘉1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 1-6.

PDF(1592 KB)
PDF(1592 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 1-6.
论文

材料参数对液弹阻尼器动态特性的影响

  • 冯林兆1,2,康丽霞3,赖亮庆1,2,陈高升1,2,赵晓健1,2,苏正涛2,刘嘉1,2
作者信息 +

Effects of material parameters on dynamic characteristics of fluid-elastomeric damper

  • FENG Linzhao1,2, KANG Lixia3, LAI Liangqing1,2, CHEN Gaosheng1,2, ZHAO Xiaojian1,2, SU Zhengtao2, LIU Jia1,2
Author information +
文章历史 +

摘要

为了探究材料性能参数对液弹阻尼器动态特性的影响规律,采用电液伺服动态试验机研究了液弹阻尼器的载荷—位移曲线、弹性刚度、阻尼刚度和损耗因子随橡胶硬度和阻尼液粘度的变化。试验结果表明:液弹阻尼器91.5%以上的弹性刚度由橡胶部分提供,并且弹性刚度随橡胶硬度的增大而增大。液弹阻尼器84.8%以上的阻尼刚度由阻尼液提供,并且阻尼刚度和损耗因子随阻尼液粘度的增大而增大,随剪切振幅的增大而减小,阻尼液粘度越大阻尼刚度和损耗因子下降幅度越大。当阻尼液粘度由2000mm2/s增大到10000mm2/s时,液弹阻尼器的阻尼刚度由2420N/mm增大到5163N/mm;当剪切振幅由0.2mm增大到1.5mm时,阻尼刚度分别减小18.5%和40.1%。以上结论可为液弹阻尼器的选材提供依据。

Abstract

In order to investigate the influence law of material performance parameters on the dynamic characteristics of the fluid-elastomeric damper, the variation of load-displacement curve, elastic stiffness, damping stiffness and loss factor of the fluid-elastomeric damper with the difference of rubber hardness and damping fluid viscosity were studied by electro-hydraulic servo dynamic testing machine. The test results showed that more than 91.5% of the elastic stiffness of the fluid-elastomeric damper is provided by the rubber part, and the elastic stiffness increases with the increase of rubber hardness. More than 84.8% of the damping stiffness of the fluid-elastomeric damper is provided by the damping fluid, and the damping stiffness and loss factor increase with the increase of the viscosity of the damping fluid and decrease with the increase of the shear amplitude. The greater the viscosity of the damping fluid, the greater the decrease of the damping stiffness and loss factor. When the viscosity of damping fluid increases from 2000 mm2/s to 10000 mm2/s, the damping stiffness of the fluid-elastomeric damper increases from 2420 N/mm to 5163 N/mm. when the shear amplitude increases from 0.2 mm to 1.5 mm, the damping stiffness decreases by 18.5% and 40.1%, respectively. The above conclusions can provide a basis for the selection of materials for fluid-elastomeric damper.

关键词

液弹阻尼器;载荷&mdash / 位移曲线;弹性刚度;阻尼刚度;损耗因子

Key words

fluid-elastomeric damper / load displacement curve / elastic stiffness / damping stiffness / loss factor

引用本文

导出引用
冯林兆1,2,康丽霞3,赖亮庆1,2,陈高升1,2,赵晓健1,2,苏正涛2,刘嘉1,2. 材料参数对液弹阻尼器动态特性的影响[J]. 振动与冲击, 2024, 43(3): 1-6
FENG Linzhao1,2, KANG Lixia3, LAI Liangqing1,2, CHEN Gaosheng1,2, ZHAO Xiaojian1,2, SU Zhengtao2, LIU Jia1,2. Effects of material parameters on dynamic characteristics of fluid-elastomeric damper[J]. Journal of Vibration and Shock, 2024, 43(3): 1-6

参考文献

[1] Mcguire D P.Fluidlastic dampers and isolators for vibration control in helicopters[C].//50th annual forum of the American helicopter society.Washington,DC:AHS,1994. [2] Mcguire D P.Fluid and elastomer damper [P]. US:06092795A,2000. [3] Jones P J,Russell D D,Mcguire D P.Latest development in fluidlastic lead-lag dampers for vibration control in helicopters[C].//59th annual forum of the American helicopter society.Phoenix,Arizona:AHS,2003. [4] Russell D D.Fluid elastomeri damper assembly including internal pumping mechanism and volume compensator[P].US:8632308B2,2010. [5] 江民标,李满福.一种新型阻尼器--液弹阻尼器[J].直升机技术,2002(4):16-18. Jiang Min-biao,Li Man-fu.A new damper—fluidlaitic damper[J]. Helicopter Technology, 2002(4): 16-18. [6] 覃海鹰,洪蛟.直升机旋翼液弹减摆器原理与设计[C].//第十八届全国直升机年会学术论文集.北京:中国航空学会,2002:301-306. Qin Hai-ying,Hong Jiao.Principle and design of helicopter rotor fluidlastic damper[C]. //Proceedings of the 18th National Helicopter Annual Conference. Beijing: China Aviation Society, 2002:301-306. [7] 覃海鹰,李满福,洪蛟.新型液弹阻尼器原理与初步构型设计分析[J].直升机技术,2003(3):21-24. Qin Hai-ying,Li Man-fu,Hong Jiao. Principle and preliminary configuration design analysis of a new type of fluidlastic damper [J]. Helicopter Technology, 2003 (3): 21-24. [8] 邓景辉,方永红,覃海鹰,等.直升机液弹阻尼器填充材料粘性特性分析[J].直升机技术,2007(2):7-11. Deng Jing-hui,Fang Yong-hong,Qin Hai-ying,et al. Analysis of viscous characteristics of fluidlastic damper filled materials for helicopter [J]. Helicopter Technology, 2007 (2): 7-11. [9] 郑俊伟,王健,江民标.嵌入式液弹阻尼器原理分析与试验研究[J].直升机技术,2010(3):16-22. Zheng Jun-wei,Wang Jian,Jiang Min-biao. Principle analysis and experimental study of embedded fluidlastic damper [J]. Helicopter Technology, 2010 (3): 16-22. [10] 武珅,杨卫东.旋翼液弹阻尼器模型试验与非线性动力学特性分析[J].南京航空航天大学学报,2011,43(3):318-323. Wu Shen,Yang Wei-dong.Model experiment on nonlinear dynamics characteristics of rotor fluidlastic damper[J].Journal of Nanjing University of Aeronautics and Astronautics, 2011,43(3):318-323. [11] Wu Shen, Yang Wei-dong,Li Rui-rui. Dynamic analysis model of embedded fluid elastomeric damper for bearingless rotor[J].Transactions of Nanjing University of Aeronautics and Astronautics,2016,33(5):552-558. [12] 武珅,杨卫东,李锐锐.基于遗传算法的直升机旋翼液弹阻尼器模型参数识别[J].振动与冲击,2015(10):213-218. Wu Shen,Yang Wei-dong,Li Rui-rui.Parametric identification for a fluid-elastomeric damper model of helicopter rotor based on genetic algorithm[J].Journal of Vibration and Shock,2015,(10):213-218. [13] 周华.不同桨叶阻尼器对直升机地面共振特性的影响研究[J].机械工程师,2018(6):76-77,79. Zhou Hua. Research on the Influence of Different Main Rotor Dampers on the Ground Resonance Characteristics of Helicopter[J]. Mechanical Engineer, 2018(6):76-77,79. [14] 曹哲,黄珺.考虑油液压缩性的液弹阻尼器动力学模型[J].直升机技术,2020(4):12-15. Cao Zhe,Huang Jun. Dynamic model of fluidlastic damper considering hydraulic compressibility [J]. Helicopter Technology, 2020 (4): 12-15. [15] 夏双满,林长亮,袁胜弢等.直升机主减液弹隔振系统隔振效率分析[J].振动与冲击,2021,40(24):293-298. Xia Shuang-man,Lin Chang-liang,Yuan Sheng-tao ea tl. Analysis of vibration isolation efficiency of a helicopter main gearbox fluidlastic system [J].Journal of Vibration and Shock,2021,40(24):293-298. [16] 闵为,杨珂,李成等.孔隙式黏滞阻尼器的力学特性研究[J]. 振动与冲击,2021,40(9):125-132. Min Wei,Yang Ke,Li Cheng ea tl.Mechanical characteristics of pore type viscous damper [J].Journal of Vibration and Shock,2021,40(9):125-132. [17] 何曼君,张红东,陈维孝等.高分子物理:第三版[M].上海:复旦大学出版社,2021. He Man-jun,Zhang Hong-dong,Chen Wei-xiao, et al.Polymer physics:Third Revision[M].Shanghai:Fudan University Press,2021.

PDF(1592 KB)

563

Accesses

0

Citation

Detail

段落导航
相关文章

/