输电铁塔在冰风耦合作用下失效概率分析

李嘉祥1,2,3,王文瑞1,付兴2,江文强3,董志骞2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 136-146.

PDF(4059 KB)
PDF(4059 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 136-146.
论文

输电铁塔在冰风耦合作用下失效概率分析

  • 李嘉祥1,2,3,王文瑞1,付兴2,江文强3,董志骞2
作者信息 +

Failure probability analysis of transmission towers under ice-wind interaction

  • LI Jiaxiang1,2,3, WANG Wenrui1, FU Xing2, JIANG Wenqiang3, DONG Zhiqian2
Author information +
文章历史 +

摘要

覆冰灾害严重威胁输电线路的安全运行。在冰灾过程中,往往伴随着风荷载的作用,为提高输电塔抵御覆冰灾害的能力,本文提出了一种基于Jones覆冰模型的输电铁塔失效概率评估框架。首先以湖南郴州、永州、邵阳三市气象站数据为基础建立了超级站,在此基础上利用Copula函数建立了考虑冰厚-风速、风速-风向相关性的联合概率分布,最后以一条实际输电线路为算例,计算了该线路铁塔在冰风荷载耦合作用下倒塌状态的失效概率。结果表明:本文提出的方法可以有效地评估输电塔在冰风耦合作用下的失效概率,考虑冰厚-风速、风向-风速相关性后,输电塔失效概率的计算更加科学合理。受风向概率的影响,输电塔失效概率的最大值出现的角度并不固定,本文可为输电线路抗冰灾设计提供参考。

Abstract

The icing disaster seriously threatens the safe operation of transmission lines. In the process of ice disaster, it is often accompanied by the effect of wind load. In order to improve the ability of transmission towers to resist icing disaster, this paper proposes a failure probability evaluation framework of transmission towers based on Jones icing model. Firstly, based on the meteorological station data of Chenzhou, Yongzhou and Shaoyang in Hunan Province, the superstation is established. On this basis, the Copula function is used to establish the joint probability distribution considering the correlation of ice thickness-wind speed and wind speed-wind direction. Finally, taking an actual transmission line as an example, the collapse failure probability of the tower under the coupling of ice wind load is calculated. The results show that the method proposed in this paper can effectively evaluate the failure probability of transmission towers under ice-wind coupling. After considering the correlation of ice thickness-wind speed and wind direction-wind speed, The calculation of failure probability of transmission towers is more scientific and reasonable. Affected by the probability of wind direction, the value of transmission towers failure probability may appear at any angle. This paper can provide reference for the design of transmission line ice disaster resistance.

关键词

输电塔 / 覆冰作用 / 风荷载 / 易损性 / 失效概率

Key words

transmission tower / icing effect / wind load / fragility / failure probability

引用本文

导出引用
李嘉祥1,2,3,王文瑞1,付兴2,江文强3,董志骞2. 输电铁塔在冰风耦合作用下失效概率分析[J]. 振动与冲击, 2024, 43(3): 136-146
LI Jiaxiang1,2,3, WANG Wenrui1, FU Xing2, JIANG Wenqiang3, DONG Zhiqian2. Failure probability analysis of transmission towers under ice-wind interaction[J]. Journal of Vibration and Shock, 2024, 43(3): 136-146

参考文献

[1] Li J X, Mcclure G, Wang S H. Ensuring the structural safety of overhead transmission lines by design[J]. Journal of Aerospace Engineering, 2021, 34(3): 04021010. [2] Zhu Y C,Huang X B, Tian Y, et al. Experimental study on the icing dielectric constant for the capacitive icing sensor[J]. Sensors, 2018, 18(10): 3325. [3] 张 烨.输电线路覆冰识别与状态评估技术研究[D].西安:西安电子科技大学,2020. ZHANG Ye. Research on icing recognition and condition evaluation technology of transmission lines[D]. Xi’an, China: Xidian University, 2020. [4] Zhu Y C, Zhou R W, Zhang Y, et al. Review on flashover risk prediction method of iced insulator based on icing monitoring technology[J]. Cold Regions Science and Technology, 2021, 185: 103252. [5] Ma G M,Mao N Q, Li Y B, et al. The reusable load cell with protection applied for online monitoring of overhead transmission lines based on fiber bragg grating[J]. Sensors, 2016, 16(6): 992. [6] 陆佳政,张红先,彭继文,等.基于极值Ⅰ型概率分布模型的湖南地区电网覆冰重现期计算[J].高电压技术,2012,38(2):464-468+2. LU Jiazheng, ZHANG Hongxian, PENG Jiwen,et al. Calculation of Hunan power grid icing recurrence interval based on extreme-value type I probability distribution model[J].High Voltage Engineering, 2012, 38(2): 464-468+2. [7] 谭 伟,李 昊,王俊锞,等.南方电网四省区覆冰特征分析及改进的覆冰模型[J].电力系统及其自动化学报,2016,28(S1):147-151. TAN Wei, LI Hao, WANG Junke, et al. Analysis of the characteristics of icing in four provinces of china southern power grid and the improved icing model[J]. Proceedings of the CSU-EPSA, 2016, 28(S1): 147-151. [8] 刘春城,刘 佼,输电线路导线覆冰机理及雨凇覆冰模型[J].高电压技术,2011,37(1):241-248+9. LIU Chuncheng, LIU Jiao. Ice accretion mechanism and glaze loads model on wires of power transmission lines[J]. High Voltage Engineering, 2011, 37(1): 241-248+9. [9] Han X B, Jian X L, Dong S J, et al. Analysis of the growth conditions of icicles during insulator icing[J]. Electric Power Systems Research, 2021, 201: 107512. [10] Torrielli A, Repetto M P, Solari, G. Long-term simulation of the mean wind speed[J].Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(11): 1139-1150. [11] Sinh, H N, Lombardo F T, Letchford C W, et al. Characterization of joint wind and ice hazard in midwestern United States[J]. Natural Hazards Review, 2016, 17(3): 04016004. [12] Sinh, H N, Lombardo F T, Letchford C. Multivariate simulation for assessing the joint wind and ice hazard in the United States[J]. Journal of Wind Engineering Industrial Aerodynamics, 2019, 184: 436-444. [13] 李宏男,李 钢,郑晓伟,等.工程结构在多灾害耦合作用下的研究进展[J].土木工程学报,2021,54(5):1-14. LI Hongnan, LI Gang, ZHENG Xiaowei, et al. Research progress in engineering structures subject to multiple hazards[J]. China Civil Engineering Journal, 2021, 54(5): 1-14. [14] Zhou Y, Ren X, Li S J. Probabilistic weighted copula regression model with adaptive sample selection strategy for complex industrial processes[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11): 6972-6981. [15] Li H N, Zheng X W, Li C. Copula-based approach to construct a joint probabilistic model of earthquakes and strong winds[J]. International Journal of Structural Stability and Dynamics, 2019, 19(4): 1950046. [16] Zheng X W, Li H N, Yang Y B, et al. Damage risk assessment of a high-rise building against multihazard of earthquake and strong wind with recorded data[J]. Engineering Structures, 2019, 200: 109697. [17] Xu Y, Tang X S, Wang J P, et al. Copula-based joint probability function for PGA and CAV: a case study from Taiwan[J]. Earthquake Engineering & Structural Dynamics, 2016, 45(13): 2123-2136. [18] 杨洪明,黄 拉,何纯芳,等.冰风暴灾害下输电线路故障概率预测[J].电网技术,2012,36(4):213-218. YANG Hongming, HUANG La, HE Chunfang, et al. Probabilistic prediction of transmission line fault resulted from disaster of ice storm[J]. Power System Technology, 2012, 36(4): 213-218. [19] Fu X, Li H N, Li G, et al. Fragility analysis of a transmission tower under combined wind and rain loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 199: 104098. [20] Alipour A, Shafei B, Shinozuka M. Reliability-based calibration of load and resistance factors for design of RC bridges under multiple extreme events: scour and earthquake[J]. Journal of Bridge Engineering, 2013, 18(5): 362-371. [21] Xue J Y, Mohammadi F, Li X, et al. Impact of transmission tower-line interaction to the bulk power system during hurricane[J]. Reliability Engineering & System Safety, 2020, 203: 107079. [22] 王增平,相禹维,王 彤.台风暴雨灾害下的110 kV线路倒塔与断线事故评估方法[J].电力系统自动化,2022,46(3):59-66. WANG Zengping, XIANG Yuwei, WANG Tong. Assessment method of tower falling and line disconnection accidents for 110 kv line in typhoon and torrential rain disaster[J]. Automation of Electric Power Systems, 2022, 46(3): 59-66. [23] Fu X, Li H N, Li G, et al. Failure analysis of a transmission line considering the joint probability distribution of wind speed and rain intensity[J]. Engineering Structures, 2021, 233: 111913. [24] 朱 凌,陈涛威,周 晨,等.考虑风速风向联合分布的大风灾害下电力断线倒塔概率预测[J].电力系统保护与控制,2019,47(2):115-122. ZHU Ling, CHEN Taowei, ZHOU Chen, et al. Probability prediction of transmission line breakage and tower topple over under wind disaster considering the joint distribution of wind speed and wind direction[J]. Power System Protection and Control, 2019, 47(2): 115-122. [25] Li H N, Zheng X W, Li C. Copula-based joint distribution analysis of wind speed and direction[J]. Journal of Engineering Mechanics, 2019, 145(5): 04019024. [26] GB 50135—2019 高耸结构设计标准[S].北京:中国计划出版社,2019. GB 50135—2019 Standard for design of high-rising structures [S]. Beijing, China: China Planning Press, 2019. [27] DL/T 5154—2012 架空输电线路杆塔结构设计技术规定[S]. 北京:中国计划出版社,2012. DL/T 5154—2012, Technical code for the design of tower and pole structures of overhead transmission line[S]. Beijing, China: China Planning Press, 2012. [28] Li J X, Li H N, Fu X. Stability and dynamic analyses of transmission tower-Line systems subjected to conductor breaking[J], International Journal of Structural Stability and Dynamics, 2017, 17(6): 1771013. [29] 郭生练,闫宝伟,肖 义,等.Copula函数在多变量水文分析计算中的应用及研究进展[J].水文,2008(3):1-8. GUO Shenglian, YAN Baowei, XIAO Yi, et al. Multivariate hydrological analysis and estimation [J]. Journal of China Hydrology, 2008(3):1-8. [30] Fu X, Wang J, Li H N, et al. Full-scale test and its numerical simulation of a transmission tower under extreme wind loads[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 119-133. [31] Li X, Zhang W, Niu H W, et al. Probabilistic capacity assessment of single circuit transmission tower-line system subjected to strong winds[J]. Engineering Structures, 2018, 175: 517-530. [32] Tian L, Liu K M. Uncertainty analysis of the dynamic responses of a transmission tower-line system subjected to cable rupture[J]. Journal of Aerospace Engineering, 2021, 34(1): 04020088. [33] Fu X, Li H N. Uncertainty analysis of the strength capacity and failure path for a transmission tower under a wind load[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 173: 147-155.

PDF(4059 KB)

Accesses

Citation

Detail

段落导航
相关文章

/