局部贴敷阻尼层空间管路有限元建模及贴敷位置优化

李家鑫1,2,王栋1,2,孙伟1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 147-157.

PDF(2870 KB)
PDF(2870 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 147-157.
论文

局部贴敷阻尼层空间管路有限元建模及贴敷位置优化

  • 李家鑫1,2,王栋1,2,孙伟1,2
作者信息 +

Finite element modeling of spatial pipeline with locally attached damping layer and position optimization of damping layer

  • LI Jiaxin1,2, WANG Dong1,2, SUN Wei1,2
Author information +
文章历史 +

摘要

为了降低处于服役阶段的航空发动机管路的有害振动,这里描述了一种在管体表面局部贴敷粘弹性阻尼层对管路进行减振的方法,主要包括阻尼层-空间管路系统动力学有限元建模及阻尼层贴敷位置优化。在建模上,基于ANSYS平台建立了满足寻优算法调用的阻尼层-空间管路参数化有限元模型。同时,整个模型引入了两种阻尼,分别是卡箍的支撑阻尼和粘弹性阻尼层的材料阻尼。在贴敷位置优化方面,创建了以阻尼层贴敷位置为设计变量、以1阶最大共振响应最小为优化目标的优化模型,并给出了采用遗传算法对该优化模型进行求解的流程。最后进行了实例研究,用搭建的贴敷阻尼层空间管路实验系统校验了所创建的阻尼层-空间管路分析模型的合理性。在此基础上,执行了阻尼层位置优化,获得了在可移动范围内使共振响应最小的阻尼层贴敷位置方案,并通过与5种随机方案的数值比较证明了优化结果的合理性。

Abstract

In order to reduce the harmful vibration of aero-engine pipeline in service stage, this paper describes a method to reduce the vibration of pipeline by attaching viscoelastic damping layer locally on the surface of pipeline, which mainly includes dynamics finite element modeling of damping layer-spatial pipeline system and position optimization of damping layer. In the modeling, based on ANSYS platform, a parametric finite element model of damping layer-spatial pipeline is established to satisfy the calling of optimization algorithm. At the same time, two kinds of damping are introduced into the whole model, which are the support damping of clamp and the material damping of viscoelastic damping layer. In the aspect of position optimization, an optimization model with the attaching position of damping layer as the design variable and the minimum of first-order maximum resonance response as the optimization objective is created, and the solution flow for the optimization model is given by genetic algorithm. Finally, a case study is carried out, and the rationality of the damping layer-spatial pipeline analysis model is verified by the experimental system of spatial pipeline with damping layer. Based on this, the position optimization of damping layer is carried out, and the damping layer attaching position scheme which minimizes the resonance response in the movable range is obtained. The rationality of the optimization results is proved by numerical comparison with five random schemes.

关键词

粘弹性阻尼层 / 空间管路 / 有限元建模 / 贴敷位置优化 / 遗传算法

Key words

viscoelastic damping layer / spatial pipeline / finite element modeling / optimization of attaching position / genetic algorithm

引用本文

导出引用
李家鑫1,2,王栋1,2,孙伟1,2. 局部贴敷阻尼层空间管路有限元建模及贴敷位置优化[J]. 振动与冲击, 2024, 43(3): 147-157
LI Jiaxin1,2, WANG Dong1,2, SUN Wei1,2. Finite element modeling of spatial pipeline with locally attached damping layer and position optimization of damping layer[J]. Journal of Vibration and Shock, 2024, 43(3): 147-157

参考文献

[1] Guo X M, Cao Y M, Ma H, et al. Vibration analysis for a parallel fluid-filled pipelines-casing model considering casing flexibility[J]. International Journal of Mechanical Sciences, 2022, 231: 107606. [2] Zhang D C, Juan M X, Zhang Z Y, et al. A dynamic modeling approach for vibration analysis of hydraulic pipeline system with pipe fitting[J]. Applied Acoustics, 2022, 197: 108952. [3] 李占营,王建军,邱明星. 航空发动机空间管路系统的流固 耦合振动特性[J]. 航空动力学报,2016,31(10):2346-2352. LI Zhanying, WANG Jianjun, QIU Mingxing. Dynamic characteristics of aero-engine pipe system considering fluid-structure coupling[J]. Journal of Aerospace Power, 2016,31(10):2346-2352. [4] Tian J L, Yuan C F, Yang L, et al. The vibration analysis model of pipeline under the action of gas pressure pulsation coupling[J]. Engineering Failure Analysis, 2016, 66: 328-340. [5] Li X, Li W H, Shi J, et al. Pipelines vibration analysis and control based on clamps’ locations optimization of multi-pump system[J]. Chinese Journal of Aeronautics, 2022, 35(6): 352-366. [6] Gao P X, YU T, Zhang Y L, et al. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: A review[J]. Chinese Journal of Aeronautics, 2021, 34(4): 83-114. [7] Ji W H, Sun W, Wang D H, et al. Optimization of aero-engine pipeline for avoiding vibration based on length adjustment of straight-line segment[J]. Frontiers of Mechanical Engineering, 2022, 17(1):11. [8] 李鑫,王少萍.基于卡箍优化布局的飞机液压管路减振分析[J].振动与冲击,2013,32(01):14-20. LI Xin, WANG Shaoping. Vibration control analysis for hydraulic pipelines in an aircraft based on optimized clamp layout[J]. Journal of Vibration and Shock, 2013, (1):14-20. [9] Wang D H, Sun W, Gao Z H, et al. Optimization of spatial pipeline with multi-hoop supports for avoiding resonance problem based on genetic algorithm [J]. Science Progress, 2022, 105(1): 1-23. [10] 高志辉,王东海,孙伟,等. L型管路系统动力学有限元建模及基于遗传算法的卡箍支撑位置优化[J]. 振动与冲击,2022,41(16):149-157,254. GAO Zhihui, WANG Donghai, SUN Wei, et al. Establishment of a dynamic finite element model of an L-type pipeline system and optimization of hoop supporting position based on the genetic algorithm[J]. Journal of Vibration and Shock, 2022,41(16):149-157,254. [11] 尹志勇,吴江海,孙凌寒. 管路阻尼敷层减振效果评估研究[J]. 船舶力学,2018,22(8):1039-1046. YIN Zhiyong, WU Jianghai, SUN Linghan. Research on the isolation of pipe damping cladding[J]. Journal of Ship Mechanics, 2018,22(8):1039-1046. [12] Davy J L, Phillips T J, Pearse J R. The damping of gypsum plaster board wooden stud cavity walls[J]. Applied Acoustics, 2015, 88: 52-56. [13] Ma H W, Sun W, Du D X, et al. Nonlinear vibration analysis of double cylindrical shells coupled structure with bolted connection and partially attached constrained layer damping[J]. International Journal of Mechanical Sciences, 2022, 223: 107270. [14] Yano D, Ishikawa S, Tanaka K, et al. Vibration analysis of viscoelastic damping material attached to a cylindrical pipe by added mass and added damping[J]. Journal of Sound and Vibration, 2019, 454: 14-31. [15] 郭亚娟,李惠清,孟光,等. 粘弹性自由层阻尼管的有限元建模与试验研究[J]. 振动与冲击,2008,27(5):99-102. GUO Yajuan, LI Huiqing, MENG Guang, et al. Finite element modeling and experimental study of viscoelastic free layer damping tube[J]. Journal of Vibration and Shock, 2008,27(5):99-102. [16] Zhai J Y, Li J W, Wei D T, et al. Vibration control of an aero pipeline system with active constraint layer damping treatment[J]. Applied Sciences, 2019, 9(10): 2094. [17] Gao P X, Zhai J Y, Qu F Z, et al. Vibration and damping analysis of aerospace pipeline conveying fluid with constrained layer damping treatment[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(8): 1529-1541. [18] Bi K M, Hao H. Numerical simulation on the effectiveness of using viscoelastic materials to mitigate seismic induced vibrations of above-ground pipelines[J]. Engineering Structures, 2016, 123: 1-14. [19] Li X Z, Jiang X H, Li H Q, et al. A hybrid IMSE-FE-BE method coupled with RSM for vibro-acoustic analysis and optimization of an I-shaped steel beam damped with constrained layer damping[J]. Applied Acoustics, 2022, 201: 109098. [20] Bai C A, Chen T N, Wang X P, et al. Optimization layout of damping material using vibration energy-based finite element analysis method[J]. Journal of Sound and Vibration, 2021, 504: 116117. [21] Xu K P, Chen Z S, Sun W. Optimization of position, size and thickness of viscoelastic damping patch for vibration reduction of a cylindrical shell structure[J]. Composite Structures, 2021, 276: 114573. [22] 高晔,孙伟,马辉. 基于实测扫频响应反推管路卡箍支承刚度及阻尼[J]. 振动与冲击,2020,39(8):58-63. GAO Ye, SUN Wei, MA Hui. Inverse identification of the pipeline support stiffness and damping of the hoop based on the measured sweep frequency response[J]. Journal of Vibration and Shock,2020,39(08):58-63. [23] Chham E, El Bardouni T, El Mghouchi Y, et al. Fuel reloads optimization for TRIGA research reactor using Genetic Algorithm coupled with neutronic and thermal-hydraulic codes[J]. Progress in Nuclear Energy, 2021, 133: 103637.

PDF(2870 KB)

Accesses

Citation

Detail

段落导航
相关文章

/