基于微缝折叠空间结构的宽带吸声超材料设计

陈应航1,2,3,徐驰1,3,黄唯纯2,解龙翔2,张建翔1,3,汪双君1,3,孙薇薇1,3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 171-178.

PDF(2511 KB)
PDF(2511 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 171-178.
论文

基于微缝折叠空间结构的宽带吸声超材料设计

  • 陈应航1,2,3,徐驰1,3,黄唯纯2,解龙翔2,张建翔1,3,汪双君1,3,孙薇薇1,3
作者信息 +

Design of broadband sound-absorbing metamaterial based on micro-slit folded space structure

  • CHEN Yinghang1,2,3, XU Chi1,3, HUANG Weichun2, XIE Longxiang2, ZHANG Jianxiang1,3,WANG Shuangjun1,3, SUN Weiwei1,3
Author information +
文章历史 +

摘要

如何实现低频宽带吸声,设计具有亚波长厚度的吸声超材料一直是一项具有挑战性的任务。提出了一种微缝折叠空间超材料结构,建立结构的理论解析模型与数值仿真模型,深入研究其声学特性和吸声机理,分析了典型结构参数对吸声特性的影响规律,基于此探究实现低频宽带吸声的可能性。研究表明,通过调整折叠空间厚度及折叠通道数目,可以在较大的频带范围内调节结构的峰值频率,同时不改变其近完美的吸声性能。最后,提出了一种宽带吸声超材料,在500Hz ~ 2000Hz频率范围内获得平均吸声系数达0.931的连续高效吸声带宽。结构厚度为5.68cm,仅为最低共振频率对应波长的1/12,实验结果良好。研究成果可为实现宽带吸声提供借鉴。

Abstract

How to achieve low-frequency broadband sound absorption and design sound-absorbing metamaterials with sub-wavelength thickness has always been a challenging task. A micro-slit folded space metamaterial structure was proposed. The theoretical analytical model and numerical simulation model of the structure were established. The acoustic characteristics and sound absorption mechanism were deeply studied. The influence of typical structural parameters on sound absorption characteristics was analyzed. Based on these, the possibility of realizing low-frequency broadband sound absorption was explored. The results show that by adjusting the thickness of the folded space and the number of folded channels, the peak frequency of the structure can be adjusted in a large frequency band without changing its near-perfect sound absorption performance. Finally, a broadband sound absorption metamaterial was proposed to obtain a continuous and efficient sound absorption bandwidth with an average sound absorption coefficient of 0.931 in the frequency range of 500 Hz ~ 2000 Hz. The thickness of the structure was 5.68 cm, which was only 1/12 of the wavelength corresponding to the lowest resonance frequency. The experimental results were good. The research results can provide reference for realizing broadband sound absorption.

关键词

声学超材料 / 微缝 / 折叠空间结构 / 宽带吸声

Key words

acoustic metamaterial / micro slit / folded space structure / broadband sound absorption

引用本文

导出引用
陈应航1,2,3,徐驰1,3,黄唯纯2,解龙翔2,张建翔1,3,汪双君1,3,孙薇薇1,3. 基于微缝折叠空间结构的宽带吸声超材料设计[J]. 振动与冲击, 2024, 43(3): 171-178
CHEN Yinghang1,2,3, XU Chi1,3, HUANG Weichun2, XIE Longxiang2, ZHANG Jianxiang1,3,WANG Shuangjun1,3, SUN Weiwei1,3. Design of broadband sound-absorbing metamaterial based on micro-slit folded space structure[J]. Journal of Vibration and Shock, 2024, 43(3): 171-178

参考文献

[1] Hammer M S, Swinburn T K, Neitzel R L.Environmental noise pollution in the United States: developing an effective public health response[J].Environmental health perspectives,2014, 122 (2): 115-119. [2] 马大猷.微穿孔板吸声结构的理论和设计[J].中国科学,1975, 5(1): 38-50. MA Dayou. Theory and design of microperforated panel sound absorption structure [J]. Science China, 1975, 5(1): 38-50. [3] Cobo P, Simón F.Multiple-layer microperforated panels as sound absorbers in buildings: A review[J].Buildings,2019, 9 (2): 53. [4] 丁昌林, 董仪宝, 赵晓鹏.声学超材料与超表面研究进展[J].物理学报,2018, 67 (19): 194301. DING Changlin, DONG Yibao, ZHAO Xiaopeng. Research progress of acoustic metamaterials and metasurfaces [J]. Journal of Physics, 2018, 67 (19) : 194301. [5] Donda K, Zhu Y, Fan S-W, et al.Extreme low-frequency ultrathin acoustic absorbing metasurface[J].Applied Physics Letters,2019, 115 (17): 173506. [6] Mh Lu L F, Yf Chen.Phononic crystals and acoustic metamaterials[J].Materials today,2009, 12 (12): 34-42. [7] Zhao H, Wang Y, Yu D, et al.A double porosity material for low frequency sound absorption[J].Composite Structures,2020, 239: 111978. [8] Liu X, Duan M, Liu M, et al.Acoustic labyrinthine porous metamaterials for subwavelength low-frequency sound absorption[J].Journal of Applied Physics,2021, 129 (19): 195103. [9] Leblanc A, Lavie A.Three-dimensional-printed membrane-type acoustic metamaterial for low frequency sound attenuation[J].The Journal of the Acoustical Society of America,2017, 141 (6): EL538-EL542. [10] Langfeldt F, Kemsies H, Gleine W, et al.Perforated membrane-type acoustic metamaterials[J].Physics Letters A,2017, 381 (16): 1457-1462. [11] Schwan L, Umnova O, Boutin C.Sound absorption and reflection from a resonant metasurface: Homogenisation model with experimental validation[J].Wave Motion,2017, 72: 154-172. [12] Wang Y, Zhao H, Yang H, et al.A space-coiled acoustic metamaterial with tunable low-frequency sound absorption[J].Europhysics Letters,2018, 120 (5): 54001. [13] Zhu X, Chen Z, Jiao Y, et al.Broadening of the sound absorption bandwidth of the perforated panel using a membrane-type resonator[J].Journal of Vibration,2018, 140 (3). [14] Li X, Wu Q, Kang L, et al.Design of multiple parallel-arranged perforated panel absorbers for low frequency sound absorption[J].Materials Horizons,2019, 12 (13): 2099. [15] Yang M, Chen S, Fu C, et al.Optimal sound-absorbing structures[J].Materials Horizons,2017, 4 (4): 673-680. [16] Wu F, Xiao Y, Yu D, et al.Low-frequency sound absorption of hybrid absorber based on micro-perforated panel and coiled-up channels[J].Applied Physics Letters,2019, 114 (15): 151901. [17] Long H, Shao C, Liu C, et al.Broadband near-perfect absorption of low-frequency sound by subwavelength metasurface[J].Applied Physics Letters,2019, 115 (10): 103503. [18] Almeida G D N, Vergara E F, Barbosa L R, et al.Sound absorption metasurface with symmetrical coiled spaces and micro slit of variable depth[J].Applied Acoustics,2021, 183: 108312. [19] Zhao H, Wang Y, Wen J, et al.A slim subwavelength absorber based on coupled microslits[J].Applied Acoustics,2018, 142: 11-17. [20] Stinson M R.The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross‐sectional shape[J].The Journal of the Acoustical Society of America,1991, 89 (2): 550-558. [21] 吴飞, 陈文渊, 巨泽港, et al.微缝卷曲耦合低频吸声超材料研究[J].振动与冲击,2021, 40 (17): 229-233. WU Fei, CHEN Wenyuan, JU Zegang, et al. Research on micro-slit curled coupling low-frequency sound-absorbing metamaterials [J]. Journal of vibration and shock, 2021, 40 (17): 229-233. [22] Beltman W, Vibration.Viscothermal wave propagation including acousto-elastic interaction, part I: theory[J].Journal of Sound,1999, 227 (3): 555-586. [23] Long H, Cheng Y, Tao J, et al.Perfect absorption of low-frequency sound waves by critically coupled subwavelength resonant system[J].Applied Physics Letters,2017, 110 (2): 023502. [24] Jiménez N, Romero-García V, Pagneux V, et al.Rainbow-trapping absorbers: Broadband, perfect and asymmetric sound absorption by subwavelength panels for transmission problems[J].Scientific reports,2017, 7 (1): 13595. [25] Wu P, Mu Q, Wu X, et al.Acoustic absorbers at low frequency based on split-tube metamaterials[J].Physics Letters A,2019, 383 (20): 2361-2366. [26] Zhu Y, Donda K, Fan S, et al.Broadband ultra-thin acoustic metasurface absorber with coiled structure[J].Applied Physics Express,2019, 12 (11): 114002. [27] Tang Y, Ren S, Meng H, et al.Hybrid acoustic metamaterial as super absorber for broadband low-frequency sound[J].Scientific Reports,2017, 7 (1): 1-11. [28] Chen Y, Xu C, Chen J, et al.Optimal design of broadband acoustic metasurface absorbers[J].Physica Scripta,2023.

PDF(2511 KB)

334

Accesses

0

Citation

Detail

段落导航
相关文章

/