铝合金三角形波纹夹芯板抗平头弹冲击的损伤特性研究

任光辉1,赵鑫2,邓云飞2,杨笑岳2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 179-188.

PDF(4800 KB)
PDF(4800 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 179-188.
论文

铝合金三角形波纹夹芯板抗平头弹冲击的损伤特性研究

  • 任光辉1,赵鑫2,邓云飞2,杨笑岳2
作者信息 +

Damage characteristics of aluminum alloy triangular corrugated sandwich plate against flat headed bullet impact

  • REN Guanghui1, ZHAO Xin2, DENG Yunfei2, YANG Xiaoyue2
Author information +
文章历史 +

摘要

为研究铝合金三角形波纹夹芯板受到平头弹冲击后的损伤形式与抗冲击性能,利用一级气炮对铝合金三角形波纹夹芯板的两种冲击位置进行冲击试验。根据试验数据,对比分析三角形波纹夹芯板及等面密度单层板的弹道极限速度与耗能,并结合有限元仿真分析夹芯板的动态损伤过程、动态载荷响应及损伤机理。研究结果表明,三角形波纹夹芯板损伤形式为剪切破坏、撕裂破坏与弯曲变形。波纹板的抗冲击性能低于等面密度的单层板,并且波纹板节点位置的抗冲击性能高于基座位置。弹体冲击速度较低时,波纹板的耗能低于单层板,随着冲击速度增加,波纹板节点位置的耗能高于单层板,基座位置的耗能与单层板相近。此外,波纹板的动态载荷响应与失效机理均受到冲击位置与弹体冲击速度的影响。

Abstract

In order to study the impact performance and damage characteristics of aluminum alloy triangular corrugated sandwich plates against blunt-nosed projectile, the impact test on the aluminum alloy triangular corrugated sandwich plates was carried out with the one-stage gas gun system. According to the test data, the ballistic limit velocity and energy consumption of triangular corrugated sandwich plate and monolithic plate are analyzed, and the dynamic damage process, dynamic load response and damage mechanism are analyzed combined with finite simulation. The results show that the damage modes of triangular corrugated sandwich plate are shear failure, tear failure and bending deformation. The impact resistance of the corrugated plate is lower than that of the monolithic plate, and the impact resistance of the corrugated plate at node position is higher than the base position. At low impact velocities, the energy dissipation of the corrugated plate is lower than that of monolithic plate. As the impact velocity increases, the energy dissipation at the node position of the corrugated plate is higher than that of the monolithic plate, and the energy dissipation at the base position is similar to that of the monolithic plate. In addition, the dynamic load response and the failure mechanism of the corrugated plate are affected by the impact position.

关键词

波纹夹芯板 / 失效模式 / 弹道极限速度 / 冲击

Key words

corrugated sandwich plate / failure mode / ballistic limit velocity / impact

引用本文

导出引用
任光辉1,赵鑫2,邓云飞2,杨笑岳2. 铝合金三角形波纹夹芯板抗平头弹冲击的损伤特性研究[J]. 振动与冲击, 2024, 43(3): 179-188
REN Guanghui1, ZHAO Xin2, DENG Yunfei2, YANG Xiaoyue2. Damage characteristics of aluminum alloy triangular corrugated sandwich plate against flat headed bullet impact[J]. Journal of Vibration and Shock, 2024, 43(3): 179-188

参考文献

[1] REJAB M R M, CANTWELL W J. The mechanical behaviour of corrugated-core sandwich panels [J]. Composites Part B, 2013, 47: 267-277. [2] XIA F K, YU T X, DURANDET Y, et al. Triangular corrugated sandwich panels under longitudinal bending [J]. Thin-Walled Structures, 2021, 169: 108359. [3] ZHANG P, CHENG Y S, LIU J, et al. Experimental and numerical investigations on laser-welded corrugated-core sandwich panels subjected to air blast loading [J]. Marine Structures, 2015, 40: 225-246. [4] 刘昆, 王哲, 王自力. 波纹夹层板冲击响应理论计算方法研究 [J]. 振动与冲击, 2019, 38(02): 90-97. LIU Kun, WANG Zhe, WANG Zili. Theoretical calculation method for the impact responses of corrugated sandwich panels [J]. Journal of Vibration and Shock, 2019, 38(02): 90-97. [5] 肖培, 苏璇, 牟浩蕾,等. 复合材料波纹板准静态轴压性能试验及数值模拟 [J]. 振动与冲击, 2021, 40(15): 156-164+174. XIAO Pei, SU Xuan, MOU Haolei, et al. Quasi-static axial compression performance tests and numerical simulation for composite corrugated plate [J]. Journal of Vibration and Shock, 2021, 40(15): 156-164+174. [6] MA Q J, REJAB M R M, Siregar J P, et al. A review of the recent trends on core structures and impact response of sandwich panels [J]. Journal of Composite Materials, 2021, 55(18). [7] PANDA H S, JAGADEESHA T. Impact analysis of Rifle bullet on corrugated sandwich panel structures for defense applications [J]. Materials Today: Proceedings, 2021, 46: 8444-8449. [8] DAHIWALE N B, PANIGRAHI S K, AKELLA K. Numerical analyses of sandwich panels with triangular core subjected to impact loading [J]. Journal of Sandwich Structures and Materials, 2015, 17(3): 238-257. [9] YU S, YU X F, AO Y L, et al. The impact resistance of composite Y-shaped cores sandwich structure [J]. Thin-Walled Structures, 2021, 169: 108389. [10] 何文心, 施绍刚, 徐烁硕. 破片侵彻作用下的波纹夹层板横舱壁结构响应分析 [J]. 造船技术, 2021, 49(02): 27-32. HE Wenxin, SHI Shaogang, XU Shuoshuo. Response analysis of transverse bulkhead structure in corrugated sandwich plate under fragment penetration [J]. Marine Technology, 2021, 49(02): 27-32. [11] NI C Y, HOU R, XIA H Y, et al. Perforation resistance of corrugated metallic sandwich plates filled with reactive powder concrete: Experiment and simulation [J]. Composite Structures, 2015, 127: 426-435. [12] 南博华, 陈以传, 卢佳,等. 波纹倾角对填充式波纹夹层结构超高速撞击防护性能影响 [J]. 宇航材料工艺, 2020, 50(05): 20-24. NAN Bohua, CHEN Yichuan, LU Jia, et al. Effects of corrugation obliquity on the protective characteristics of stuffed corrugation-cored sandwiches under hypervelocity Impact [J]. Aerospace Materials & Technology, 2020, 50(05): 20-24. [13] WANG X, HE C, YUE Z S, et al. Shock resistance of elastomer-strengthened metallic corrugated core sandwich panels [J]. Composites Part B, 2022, 237: 109840. [14] 邓云飞, 贾惠茹, 路明建,等. 2A12铝合金圆波纹夹芯板抗平头弹冲击特性的试验研究 [J]. 中国机械工程, 2021, 32(03): 357-362+367. DENG Yunfei, JIA Huiru, LU Mingjian, et al. Experimental study of impact resistance of 2A12 aluminum alloy circular corrugated sandwich plates to blunt-nosed projectile [J]. China Mechanical Engineering, 2021, 32(03): 357-362+367. [15] Recht R F, Ipson T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384-390. [16] Børvik T, Hopperstad O S, Berstad T, et al. A computational model of viscoplasticity and ductile damage for impact and penetration [J]. European Journal of Mechanics. 2001, 20(5): 685-712. [17] 张伟, 魏刚, 肖新科. 2A12铝合金本构关系和失效模型 [J]. 兵工学报, 2013, 34(3): 276-282. ZHANG Wei, WEI Gang, XIAO Xinke. Constitutive relation and fracture criterion of 2A12 aluminum alloy [J]. Acta Armamentarii, 2013, 34(3): 276-282. [18] 张博文, 万正权, 张爱锋,等. 应力三轴度对TA31钛合金失效行为的影响研究 [J]. 船舶力学, 2022, 26(10): 1485-1495. ZHANG Bowen, WAN Zhengquan, ZHANG Aifeng, et al. Effect of stress triaxiality on the failure behavior of TA31 titanium alloy [J]. Journal of Ship Mechanics, 2022, 26(10): 1485-1495. [19] 钱凌云, 纪婉婷, 王小灿,等. 不同应力状态下的高强钢板断裂机理及预测 [J]. 机械工程学报, 2020, 56(24): 72-80. QIAN Lingyun, JI Wanting, WANG Xiaocan, et al. Research on Fracture Mechanism and Prediction of High-strength Steel Sheet under Different Stress States [J]. Journal of Mechanical Engineering, 2020, 56(24): 72-80. [20] Lou Y S, Yoon J W, Huh H, et al. Correlation of the maximum shear stress with micro-mechanisms of ductile fracture for metals with high strength-to-weight ratio [J]. International Journal of Mechanical Sciences, 2018, 146-147: 583-601. [21] 张铁纯, 张永, 田锐,等. TC4钛合金板厚度对其撞击失效特性影响研究 [J]. 振动与冲击, 2020, 39(10): 52-57. ZHANG Tiechun, ZHANG Yong, TIAN Rui, et al. Influence of the thickness on the impact failure characteristics of TC4 titanium alloy plate [J]. Journal of Vibration and Shock, 2020, 39(10): 52-57.

PDF(4800 KB)

369

Accesses

0

Citation

Detail

段落导航
相关文章

/