基于深度残差收缩迁移网络的复杂工况下滚动轴承故障诊断

陈仁祥1,张晓1,朱玉清1,徐向阳1,杨宝军2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 194-200.

PDF(1415 KB)
PDF(1415 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 194-200.
论文

基于深度残差收缩迁移网络的复杂工况下滚动轴承故障诊断

  • 陈仁祥1,张晓1,朱玉清1,徐向阳1,杨宝军2
作者信息 +

Fault diagnosis of rolling bearing under complex operating conditions based on deep residual shrinkage transfer network

  • CHEN Renxiang1, ZHANG Xiao1, ZHU Yuqing1, XU Xiangyang1, YANG Baojun2
Author information +
文章历史 +

摘要

针对噪声和不同转速的复杂工况下滚动轴承故障诊断问题,提出一种基于深度残差收缩迁移网络的复杂工况下滚动轴承故障诊断方法。在深度残差收缩网络中加入领域适配层构建出具备降噪与适配能力的深度残差收缩迁移网络,从而减小噪声带来的干扰及转速变化导致的分布差异。首先,利用注意力机制学习经卷积层后各特征通道的重要性自动设定一组阈值,借助软阈值化将阈值范围内的特征置为零,减少噪声带来的干扰;然后,通过边缘分布适配对齐两域特征分布,减小转速变化带来的分布差异;最后,在Softmax分类层下实现端到端的复杂工况下的滚动轴承故障诊断。复杂工况下滚动轴承故障诊断实验验证了所提方法的可行性和有效性。

Abstract

Aiming the diagnosis of rolling bearing faults in complex operating conditions with strong noise and different speeds. Rolling bearing fault diagnosis method under complex working conditions based on deep residual shrinkage transfer network (DRSTN) was proposed. The domain adaptation layer is added to the deep residual shrinkage network to construct the deep residual shrinkage migration network with noise reduction and adaptation ability, so as to reduce the interference caused by noise and the distribution difference caused by speed change. Firstly, a set of thresholds are automatically set by using the attention mechanism to learn the importance of each feature channel after convolution layer, and the features in the threshold range are set to zero by soft threshold to reduce the interference caused by noise. Then, the feature distribution of the two domains is aligned by edge distribution to reduce the distribution difference caused by speed change. Finally, the fault diagnosis of rolling bearing under end-to-end complex conditions is realized under Softmax classification layer. The experimental results of rolling bearing fault diagnosis under complex conditions verify the feasibility and effectiveness of the proposed method.

关键词

噪声 / 不同转速 / 残差收缩迁移 / 滚动轴承 / 故障诊断

Key words

noise interference / different speed / residual shrinkage transfer / rolling bearing / fault diagnosis

引用本文

导出引用
陈仁祥1,张晓1,朱玉清1,徐向阳1,杨宝军2. 基于深度残差收缩迁移网络的复杂工况下滚动轴承故障诊断[J]. 振动与冲击, 2024, 43(3): 194-200
CHEN Renxiang1, ZHANG Xiao1, ZHU Yuqing1, XU Xiangyang1, YANG Baojun2. Fault diagnosis of rolling bearing under complex operating conditions based on deep residual shrinkage transfer network[J]. Journal of Vibration and Shock, 2024, 43(3): 194-200

参考文献

[1] 田晶,王英杰,王志,等.基于EEMD与空域相关降噪的滚动轴承故障诊断方法[J].仪器仪表学报,2018,39(07):144-151. TIAN Jin, WANG Ying-jie, WANG Zhi, et al. Fault diagnosis for rolling bearing based on EEMD and spatial correlation denoising[J], Chinese Journal of Scientific Instrument,2018,39(07):144-151. [2] 侯文擎,叶鸣,李巍华.基于改进堆叠降噪自编码的滚动轴承故障分类[J].机械工程学报,2018,54(07):87-96. HOU Wwen-qing, LI Ming, LI Wei-hua. Rolling Element Bearing Fault Classification Using Improved Stacked De-noising Auto-encoders [J]. Mechanical Systems and Signal Processing, 2018,54(07):87-96. [3] 赵小强,张亚洲.改进CNN的滚动轴承变工况故障诊断[J].西安交通大学学报,2021(12):1-11. ZHAO Xiao-qiang, ZHANG Ya-zhou. Improved CNN Fault Diagnosis Method of Rolling Bearings under Variable Working Conditions[J]. Journal of Xi'an Jiaotong University, 2021(12):1-11. [4] 袁壮,董瑞,张来斌,等.深度领域自适应及其在跨工况故障诊断中的应用[J].振动与冲击,2020,39(12):281-288. YUAN Zhuang, DONG Rui, ZHANG Lai-bin, et al. Deep domain adaptation and its application in fault diagnosis across working conditions[J], Journal of Vibration and Shock, 2020,39(12):281-288. [5] 陈仁祥,唐林林,孙健,等.一维深度子领域适配的不同转速下旋转机械复合故障诊断[J].仪器仪表学报,2021,42(05):227-234. CHEN Ren-xiang, TANG Lin-lin, SUN Jian, et al. Composite Fault Diagnosis of Rotating Machinery under Different Speed Based on one Dimensional Deep Subdomain Adaption[J]. Chinese Journal of Scientific Instrument, 2021,42(05):227-234. [6] WANG X, MAO D X, LI X D. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network[J]. Measurement, 2021, 173(6):108518. [7] ZHAO M, ZHONG S, FU X, et al. Deep Residual Shrinkage Networks for Fault Diagnosis[J]. IEEE Transactions on Industrial Informatics, 2020,16(7):4681-4690. [8] ZOU Y, LIUY, DENG J, et al. A novel transfer learning method for bearing fault diagnosis under different working conditions[J]. Measurement, 2021, 171:108767. [9] 康守强, 胡明武, 王玉静, 等.基于特征迁移学习的变工况下滚动轴承故障诊断方法[J].中国电机工程学报,2019,39(03):764-772. KANG Shou-qiang, HU Ming-wu, WANG Yu-jing, et al. Fault diagnosis method of rolling bearing under variable conditions based on feature transfer learning [J]. China Journal of Electrical Engineering, 2019,39(03):764-772. [10] Li F, Tang T, Tang B, et al. Deep Convolution Domain-adversarial Transfer Learning for Fault Diagnosis of Rolling Bearings[J]. Measurement, 2020, 169(5):108339. [11] Ioffe S, Szegedy C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[J]. 2015, pp. 448–456. [12] BORGWARDT K M, GRETTON A, RASCH M J, et al. Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy[J]. Bioinformatics,2006, 22(14): 49-57. [13] CHEN C, SHEN F, YAN R. Topic Correlation Analysis for Bearing Fault Diagnosis Under Variable OperatingConditions[J]. Journal of Physics Conference Series, 2017, 842:1-9. [14] LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks[J]. Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015, 37(7): 97–105. [15] 郭亮,董勋,高宏力,等. 无标签数据下基于特征知识迁移的机械设备智能故障诊断[J].仪器仪表学报,2019,40(8): 58-64. GUO Liang,DONG Xun,GAO Hong-li,et al. Feature knowledge transfer based intelligent fault diagnosis method of machines with unlabeled data[J]. Chinese Journal of Scientific Instrument,2019,40(8): 58-64.

PDF(1415 KB)

Accesses

Citation

Detail

段落导航
相关文章

/