基于声电类比的低频消音结构优化设计

李奇1,王晓明1,梅玉林2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 201-208.

PDF(1411 KB)
PDF(1411 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 201-208.
论文

基于声电类比的低频消音结构优化设计

  • 李奇1,王晓明1,梅玉林2
作者信息 +

Optimization design of low-frequency silencing structure based on acoustic-electric analogy

  • LI Qi1, WANG Xiaoming1, MEI Yulin2
Author information +
文章历史 +

摘要

基于声电类比,设计了与电滤波器性能相似的低频消音结构,并结合传递矩阵法和模拟退火法,构造了声学结构的优化设计策略。首先,采用归一化方法,以四阶切比雪夫高通电滤波器为基准,设计了电学带阻滤波器;然后,基于声电类比,将电路中的电感电容转换为声学结构中的细管和圆柱腔,构造了消音结构原型,并利用传递矩阵法,建立其数学模型,推导声波传递损失表达式;最后,结合声学结构的数学模型和模拟退火法,以有效衰减带宽最大为目标,以消音结构的尺寸参数为变量,对原型结构进行优化设计。结果表明:基于声电类比,能获得合理的消音结构原型,克服了仅依靠经典消音结构进行设计的局限;结合推导的传递损失数学模型和模拟退火法,对消音结构原型进行参数优化,能显著提高其消音效果,表现在传递损失超过20dB的带宽拓宽至410Hz-2165Hz,是优化前带宽的202%,特别是优化后的结构克服了原型结构在466Hz-537Hz频率范围内不能实现有效消音的缺陷,获得了连续的大跨度有效带宽,且传递损失曲线平均增幅达22.8%。

Abstract

A low-frequency acoustic structure is designed by means of electric-acoustic analogy, and an optimization strategy of the acoustic structure is constructed by combining transfer matrix method and simulated annealing method. First, a band-stop electric filter is designed based on the fourth-order Chebyshev high-pass filter through adopting the normalization method. Second, according to the acoustic-electric analogy, a silencing structure is obtained by respectively substituting a tubule and a cylindrical cavity for the inductance and capacitance in the circuit. And then, the mathematical model of the silencing structure is established by using the transfer matrix method, and an expression calculating transfer losses of the silencing structure is derived. Finally, based on the mathematical model, an optimization strategy is proposed by using simulated annealing method, and is implemented to optimize structure parameters of the silencing structure. The results show that, it is feasible to use the circuit of electrical filter to guide the structural design of silencing structure; the silencing structure’s mathematical model established by transfer matrix method can accurately describe the state of sound wave propagating in the silencing structure; compared with the initial acoustic structure, the optimized silencing structure has better filtering effects, including a wider attenuation band with transmission losses above 20dB, covering 410Hz-2165Hz and extending by 202% , and an obvious increase of transmission losses.

关键词

声电类比 / 传递损失 / 有限元仿真 / 传递矩阵法 / 模拟退火法 / 声学结构

Key words

electric-acoustic analogy / transmission loss / finite element simulation / transfer matrix method / simulated annealing / acoustic structure

引用本文

导出引用
李奇1,王晓明1,梅玉林2. 基于声电类比的低频消音结构优化设计[J]. 振动与冲击, 2024, 43(3): 201-208
LI Qi1, WANG Xiaoming1, MEI Yulin2. Optimization design of low-frequency silencing structure based on acoustic-electric analogy[J]. Journal of Vibration and Shock, 2024, 43(3): 201-208

参考文献

[1] KUMAR S, LEE H. The present and future role of acoustic metamaterials for architectural and urban noise mitigations[J]. Acoustics (Basel, Switzerland), 2019,1(3): 590-607. [2] GAO C, HU C D, MEI J, et al. Barrier-free duct muffler for low-frequency sound absorption[J]. Frontiers in Materials, 2022,9: 1-14. [3] LIU Hai-tao. Acoustic performance analysis of Helmholtz resonators with conical necks and its application[J]. Noise Control Engineering Journal, 2019,41(8): 79-85 [4] 沈惠杰, 李雁飞, 苏永生, 等. 舰船管路系统声振控制技术评述与声子晶体减振降噪应用探索[J]. 振动与冲击, 2017,36(15): 163-170, 209. SHEN Hui-jie, LI Yan-fei, SU Yong-sheng, et al. Review of sound and vibration control techniques for ship piping systems and exploration of photonic crystals applied in noise and vibration reduction[J]. Journal of Vibration and Shock, 2017,36(15): 163-170, 209. [5] 顾倩霞, 左言言, 赵海卫, 等. 汽车消声器的声学性能分析与结构优化[J]. 机械设计与制造, 2021(4): 48-52. GU Qian-xia, ZUO Yan-yan, ZHAN Hai-wei, et al. Acoustic performance analysis and optimized design of vehicle muffler[J]. Machinery Design & Manufacture, 2021(4): 48-52. [6] HARIZ K M, SAID M F M, AIMAN D A, et al. Review on resonator and muffler configuration acoustics[J]. Archives of Acoustics, 2018,43(3): 369. [7] WU C, CHEN L, NI J, et al. Modeling and experimental verification of a new muffler based on the theory of quarter-wavelength tube and the Helmholtz muffler[J]. SPRINGERPLUS, 2016,5. [8] 葛茂鑫, 李吉. 双颈部亥姆霍兹共振器的声学特性[J]. 噪声与振动控制, 2020,40(4): 231-234. GE Mao-xin, LI Ji. Acoustic Characteristics of Double Neck Helmholtz Resonators[J]. Noise and Vibration Control, 2020,40(4): 231-234. [9] 贺子厚, 赵静波, 姚宏, 等. 薄膜底面Helmholtz腔声学超材料的隔声性能[J]. 物理学报, 2019,68(21): 148-159. HE Zi-hou, ZHAO Jing-bo, YAO Hong, et al. Acoustic insulation properties of acoustic metamaterials in Helmholtz cavity on the underside of thin films[J]. Acta Physica Sinica, 2019,68(21): 148-159. [10] 陈鑫, 姚宏, 赵静波, 等. 薄膜与Helmholtz腔耦合结构低频带隙[J]. 物理学报, 2019,68(21): 126-135. CHEN Xin, YAO Hong, ZHAO Jing-bo, et al. Low frequency band gap structure of thin film coupled with Helmholtz cavity[J]. Acta Physica Sinica, 2019,68(21): 126-135. [11] SONG C, MA X, ZHAO J, et al. Broadband sound absorption and energy harvesting by a graded array of Helmholtz resonators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022,29(3): 777-783. [12] CAI C, MAK C M. Hybrid noise control in a duct using a periodic dual Helmholtz resonator array[J]. Applied Acoustics, 2018,134: 119-124. [13] CAI C, MAK C M, WANG X. Noise attenuation performance improvement by adding Helmholtz resonators on the periodic ducted Helmholtz resonator system[J]. Applied Acoustics, 2017,122: 8-15. [14] 曹晓丰, 郁殿龙, 刘江伟, 等. 周期性附加单腔赫姆霍兹共鸣器一维管路声带隙耦合分析[J]. 振动与冲击, 2016,35(19): 20-25. CAO Xiao-feng, YU Dian-long, LIU Jiang-wei, et al. Coupled acoustic band-gap characteristics of one-dimensional pipe periodically installing single Helmholtz resonators[J]. Journal of Vibration and Shock, 2016,35(19): 20-25. [15] WU D, ZHANG N, MAK C M, et al. Hybrid noise control using multiple Helmholtz resonator arrays[J]. Applied Acoustics, 2019,143: 31-37. [16] 沈惠杰, 张涛, 汤智胤, 等. 低频消声周期管路设计及其声学性能测试[J]. 振动与冲击, 2022,41(8): 79-85. SHEN Hui-jie, ZHANG Tao, TANG Zhi-yin, et al. Design of a low-frequency noise suppression periodic pipe and its acoustic performance test[J]. Journal of Vibration and Shock, 2022,41(8): 79-85. [17] 韩东海, 张广军, 赵静波, 等. 双迷宫型通道Helmholtz周期结构的低频带隙机理及隔声特性[J]. 人工晶体学报, 2022,51(7): 1212-1219. HAN Dong-hai, ZHANG Guang-jun, ZHAO Jing-bo, et al. Low-frequency band gap mechanism and sound insulation characteristics of Helmholtz periodic structure with double labyrinth tubes[J]. Journal of Synthetic crystals, 2022,51(7): 1212-1219. [18] 韩东海, 张广军, 赵静波, 等. 新型Helmholtz型声子晶体的低频带隙及隔声特性[J]. 物理学报, 2022,71(11): 209-217. HAN Dong-hai, ZHANG Guang-jun, ZHAO Jing-bo, et al. Low frequency band gap and sound isolation characteristics of a new Helmholtz phonon crystal[J]. Acta Physica Sinica, 2022,71(11): 209-217. [19] SHAO H, HE H, CHEN Y, et al. A tunable metamaterial muffler with a membrane structure based on Helmholtz cavities[J]. Applied Acoustics, 2020,157: 107022. [20] ZHANG Z, YU D, LIU J, et al. Transmission and bandgap characteristics of a duct mounted with multiple hybrid Helmholtz resonators[J]. Applied Acoustics, 2021,183: 108266. [21] YASUDA T, WU C, NAKAGAWA N, et al. Studies on an automobile muffler with the acoustic characteristic of low-pass filter and Helmholtz resonator[J]. Applied Acoustics, 2013,74(1): 49-57. [22] 程伟明. 多种消声结构设计与性能研究[D]. 大连理工大学车辆工程学院, 2020. CHENG Wei-ming. Design and performance research of various silencing structures[d]. School of Vehicle Engineering, Dalian University of Technology, 2020. [23] BO D, MEI Y, WANG X. Periodic acoustic structure design based on the second-order Butterworth acoustic filter[C], 8th International Conference on Advances in Machinery, Materials Science and Engineering Application (MMSE 2022). China: IOS Press BV, 2022. [24] 刘兴恕, 关志伟, 尹万建, 等. 汽车排气系统排气口降噪优化研究[J]. 机械设计与制造, 2022,11: 196-201. LIU Xing-shu, GUAN Zhi-wei, YIN Wang-jian et al. Noise reduction optimization of exhaust port in automobile exhaust system[J]. Machinery Design & Manufacture, 2022,11: 196-201. [25]安志杰, 胡社来. 科考船三维综合布置优化设计要点分析[J]. 船舶, 2017, 28(S1): 180-188. AN Zhi-jie, HU She-lai. Analysis of optimization design points in 3D comprehensive arrangement for research vessel[J]. Ship & Boat, 2017, 28(S1): 180-188. [26] LEE J K, OH K S, LEE J W. Methods for evaluating in-duct noise attenuation performance in a muffler design problem[J]. Journal of Sound and Vibration, 2020,464: 114982. [27] 程春, 李舜酩, 贾骁. 传递矩阵法的排气消声器声学性能分析[J]. 噪声与振动控制, 2013,33(04): 126-130. CHENG Chun, LI Shun-ming, JIA Xia. Acoustic performance analysis of exhaust muffler using transfer matrix method[J]. Noise and Vibration Control, 2013,33(04): 126-130. [28] ZAW T, ABU A, FAWAZI N, et al. Effects of parameters of Helmholtz resonator on transmission loss of hybrid muffler[J]. International Journal of Engineering & Technology (Dubai), 2018,7(3.17): 151. [29] CHIU M C, CHENG H C. Optimal design for multi-diffuser mufflers using the simulated annealing method[J]. Archives of Acoustics, 2021,46(4): 685-696.

PDF(1411 KB)

268

Accesses

0

Citation

Detail

段落导航
相关文章

/