基于变分模态分解的多缸柴油机缸套振动差异分析

李林涛1,曹恒超2,朱桂香2,李国兴1,刘东1,刘培毓1,史威威1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 233-240.

PDF(3076 KB)
PDF(3076 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 233-240.
论文

基于变分模态分解的多缸柴油机缸套振动差异分析

  • 李林涛1,曹恒超2,朱桂香2,李国兴1,刘东1,刘培毓1,史威威1
作者信息 +

Difference analysis of cylinder liner vibrations in multi-cylinder diesel engine based on variational modal decomposition

  • LI Lintao1, CAO Hengchao2, ZHU Guixiang2, LI Guoxing1, LIU Dong1, LIU Peiyu1, SHI Weiwei1
Author information +
文章历史 +

摘要

多缸柴油机缸套振动噪声响应的差异导致缸套润滑、磨损及穴蚀现象不同,引起缸套可靠性差异并缩短整机使用寿命,研究差异的产生原因有助于柴油机的维护与设计优化。内燃机振动噪声的主要来源是燃烧冲击与活塞二阶运动引起的缸套敲击,而多缸柴油机缸套振动噪声的差异主要来源于活塞敲缸。以某重型六缸柴油机为研究对象,基于变分模态分解技术对多缸振动响应差异开展了溯源分析。建立了活塞敲缸动力学计算模型并通过试验验证了参数设置的合理性,通过变分模态分解(VMD)从振动响应中提取了主要频率成分与相关模态。结果表明:多缸柴油机各缸振动幅值分布趋势一致,缸套中上部的振动最剧烈。各缸振动差异与机体模态特性有关,缸套间振动差异与机体第7阶模态振型趋势一致,体现为第6缸振动最强,第2缸振动最弱。

Abstract

The differences in the vibration and noise response of multi-cylinder diesel engine lead to differences in liner lubrication, wear and cavitation. It causes differences in liner reliability and shortens engine lifetime. Research on these differences could help to optimise the maintenance and design of diesel engines. The main source of vibration noise in internal combustion engines is the combustion shock and piston secondary motion caused by the cylinder liner knock. The main source of cylinder liner vibration noise in multi-cylinder diesel engines is the piston knock. A heavy-duty six-cylinder diesel engine is used as the research object, and a retrospective analysis of the differences in multi-cylinder vibration response is carried out based on the variational modal decomposition(VMD). A piston dynamics model was established and the rationality of the parameter settings was verified through experiments. The main frequency components and associated modes were extracted from the vibration response by VMD. The results show that all cylinders of the multi-cylinder diesel engine have the same trend of vibration amplitude distribution, with the most intense vibration in the middle and upper part of the cylinder liner. The difference in vibration between cylinders is related to the modal characteristics of the body, and the difference in vibration between cylinder liners is consistent with the trend of the 7th order modal vibration pattern of the body, which is reflected in the strongest vibration of cylinder 6 and the weakest vibration of cylinder 2.

关键词

柴油机 / 缸套振动 / 动力学模型 / 变分模态分析

Key words

Diesel engine / liner vibration / dynamics model / variational modal decomposition(VMD)

引用本文

导出引用
李林涛1,曹恒超2,朱桂香2,李国兴1,刘东1,刘培毓1,史威威1. 基于变分模态分解的多缸柴油机缸套振动差异分析[J]. 振动与冲击, 2024, 43(3): 233-240
LI Lintao1, CAO Hengchao2, ZHU Guixiang2, LI Guoxing1, LIU Dong1, LIU Peiyu1, SHI Weiwei1. Difference analysis of cylinder liner vibrations in multi-cylinder diesel engine based on variational modal decomposition[J]. Journal of Vibration and Shock, 2024, 43(3): 233-240

参考文献

[1] NAKAYAMA K, TAMAKI S, MIKI H, et al. The Effect of Crankshaft Offset on Piston Friction Force in a Gasoline Engine[C/OL]. https://www.sae.org/content/2000-01-0922/ [2022-02-22]. [2] BHAVI I, KUPPAST V V, CHILLAL D D. Experimental Investigation of Influence of Piston Pin-Offset on Reduction of Piston Slap Noise[J]. Journal of Failure Analysis and Prevention, 2021, 21(4): 1195-1202. [3] GENG Z, CHEN J. Investigation into piston-slap-induced vibration for engine condition simulation and monitoring[J]. Journal of Sound and Vibration, 2005, 282(3-5): 735-751. [4] TAN Y-C, RIPIN Z M. Analysis of piston secondary motion[J]. Journal of Sound and Vibration, 2013, 332(20): 5162-5176. [5] 郭磊, 郝志勇, 张鹏伟, 等. 活塞动力学二阶运动的仿真方法与试验研究[J]. 内燃机工程, 2009, 30(6): 41-47. GUO Lei,HAO Zhiyong,ZHANG Pengwei, et al. Simulation and Experimental Research on Piston Secondary Motion[J]. Chinese Internal Combustion Engine Engineering, 2009, 30(6): 41-47. [6] MURAKAMI H, NAKANISHI N, ONO N, et al. New Three-dimensional Piston Secondary Motion Analysis Method Coupling Structure Analysis and Multi Body Dynamics Analysis[J]. SAE International Journal of Engines, 2011, 5(1): 42-50. [7] GUO J, RANDALL R B, BORGHESANI P, et al. A study on the effects of piston secondary motion in conjunction with clearance joints[J]. Mechanism and Machine Theory, 2020, 149: 103824. [8] YANG H, LEI J, DENG X,et al. Research on the influence of key structural parameters on piston secondary motion[J]. Scientific Reports, 2021, 11(1): 19080. [9] 吴礼民, 毕玉华, 吴彪, 等. 活塞二阶运动对非道路高压共轨柴油机振动及噪声影响分析[J]. 振动与冲击, 2020, 39(11): 193-200. WU Limin, BI Yuha, WU Biao, et al. Analysis of influence of piston secondary motion on vibration and noise of non-road high pressure common rail diesel engine[J]. Journal of Vibration and Shock, 2020, 39(11): 193-200. [10] ZHAO X, CHENG Y, WANG L, et al. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal[J]. Journal of Sound and Vibration, 2017, 390: 205-217. [11] JI S, LAN X, LIAN J, et al. Combustion parameter estimation for ICE from surface vibration using frequency spectrum analysis[J]. Measurement, 2018, 128: 485-494. [12] LI G, GU F, WANG T, et al. Investigation into the Vibrational Responses of Cylinder Liners in an IC Engine Fueled with Biodiesel[J]. 2017: 24. [13] 王兆文, 覃国宇, 郭凯, 等. 内燃机配气机构气门振动解析方法研究[J]. 内燃机学报, 2021, 39(2): 176-185. WANG Zhaowen, QIN Guoyu, GUO Kai, et al. Study on the Analytical Method of Valve Vibration in Valve Train of Internal Combustion Engine[J]. Transaction of CSICE, 2021, 39(2): 176-185. [14] LI H, WU X, LIU T, et al. Composite fault diagnosis for rolling bearing based on parameter-optimized VMD[J]. Measurement, 2022, 201: 111637. [15] TANG X, HU B, WEN H. Fault Diagnosis of Hydraulic Generator Bearing by VMD-Based Feature Extraction and Classification[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2021, 45(4): 1227-1237. [16] 刘建昌, 权贺, 于霞, 等. 基于参数优化VMD和样本熵的滚动轴承故障诊断[J]. 自动化学报, 2022, 48(3): 808-819. LIU Jianchang, QUAN He, YU Xia, et al. Rolling Bearing Fault Diagnosis Based on Parameter Optimization VMD and Sample Entropy[J]. Acta Actomatica Sinica, 2022, 48(3): 808-819. [17] 王向阳, 何岭松, 王平江, 等. 基于VMD的铣刀破损检测[J]. 振动与冲击, 2020, 39(16): 135-140+162. WANG Xiangyang, HE Lingsong, WANG Pingjiang, et al. Milling cutter breakage detection based on VMD[J]. Journal of Vibration and Shock, 2020, 39(16): 135-140+162. [18] 任刚, 贾继德, 梅检民, 等. 基于变分模态分解和去趋势波动分析的柴油机振动信号去噪方法[J]. 内燃机工程, 2019, 40(2): 76-81+91. REN Gang, JIA Jide, MEI Jianmin, et al. Vibration Signal Denoising Method of Diesel Engines Based on VMD and DFA[J]. Chinese Internal Combustion Engine Engineering, 2019, 40(2): 76-81+91. [19] TSUJIUCHI N, KOIZUMI T, HAMADA K, et al. Optimization of Profile fo r Reduction of Piston Slap Excitation[C/OL]. https://www.sae.org/content/2004-32-0022/ [2022-11-28]. [20] MCFADDEN P D, TURNBULL S R. Dynamic analysis of piston secondary motion in an internal combustion engine under non-lubricated and fully flooded lubricated conditions[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2011, 225(11): 2575-2585. [21] GUZZOMI A L, HESTERMAN D C, STONE B J. Variable inertia effects of an engine including piston friction and a crank or gudgeon pin offset[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2008, 222(3): 397-414.

PDF(3076 KB)

478

Accesses

0

Citation

Detail

段落导航
相关文章

/