斜入射地震波下单层球面网壳土-结构相互作用及其地震响应分析

韩庆华1,2,3,王月3,芦燕1,2,3,李亚明4,薛原5

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 255-264.

PDF(3599 KB)
PDF(3599 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 255-264.
论文

斜入射地震波下单层球面网壳土-结构相互作用及其地震响应分析

  • 韩庆华1,2,3,王月3,芦燕1,2,3,李亚明4,薛原5
作者信息 +

Soil-structure interaction and seismic response analysis of single-layer reticulated dome under oblique incidence seismic wave

  • HAN Qinghua1,2,3, WANG Yue3, LU Yan1,2,3, LI Yaming4, XUE Yuan5
Author information +
文章历史 +

摘要

为分析斜入射地震波下单层球面网壳土-结构相互作用(SSI)及其地震响应,采用等效节点力实现地震波输入,通过粘弹性人工边界处理无穷远辐射条件,分析了地震波类型、土体参数、入射角度等因素对单层球面网壳结构的土-结构相互作用及其地震响应影响。结果表明:单层球面网壳结构在地震波入射一侧出现翘起,网壳总体沿入射方向发生旋转,P波(primary wave)斜入射时支座位移差最大达0.514m,为网壳跨度的1/250。P波斜入射时,软弱土情况下网壳顶点位移比中硬土和中软土大,顶点位移随入射角增大呈现先增大后减小的趋势;SV波(secondary wave)入射时,中软土情况下网壳顶点位移比中硬土和软弱土大,顶点位移随入射角增大而增大。斜入射地震波下,考虑土-结构相互作用后网壳顶点位移增幅最大达5.5倍,网壳外圈位移增幅大于网壳跨中增幅。

Abstract

To study the soil-structure interaction (SSI) and seismic response of single-layer reticulated dome under oblique incident wave, the equivalent nodal force and viscous-spring artificial boundary was used. The results show that the reticulated dome tilts at the seismic wave incident side and rotates along the incident direction. The maximum support displacement difference reaches 0.514m under oblique incident P-wave, which is 1/250 of the span. The vertex displacement in soft soil is larger than that in medium hard soil and medium soft soil, and first increases then decreases with the increase of incident angle under oblique incident P-wave. The vertex displacement in medium soft soil is larger than that in medium hard soil and soft soil, and increases with the incidence angle increasing under oblique incident SV-wave. Under oblique incident seismic waves, the maximum vertex displacement increase is 5.5 times after considering soil-structure interaction, and the displacement increase at the outer ring of reticulated dome is greater than that at the middle span.

关键词

单层球面网壳结构 / 土-结构相互作用 / 斜入射P波 / 斜入射SV波 / 粘弹性人工边界

Key words

single-layer reticulated dome / soil-structure interaction / oblique incidence of P-wave / oblique incidence of SV-wave / viscous-spring artificial boundary

引用本文

导出引用
韩庆华1,2,3,王月3,芦燕1,2,3,李亚明4,薛原5. 斜入射地震波下单层球面网壳土-结构相互作用及其地震响应分析[J]. 振动与冲击, 2024, 43(3): 255-264
HAN Qinghua1,2,3, WANG Yue3, LU Yan1,2,3, LI Yaming4, XUE Yuan5. Soil-structure interaction and seismic response analysis of single-layer reticulated dome under oblique incidence seismic wave[J]. Journal of Vibration and Shock, 2024, 43(3): 255-264

参考文献

[1] 陈厚群. 坝址地震动输入机制探讨[J]. 水利学报, 2006, 37(12): 1417-1423. CHEN Houqun. Discussion on seismic input mechanism at dam site [J]. Journal of Hydraulic Engineering, 2006, 37(12): 1417-1423. [2] 丁海平,朱重洋,于彦彦. P,SV波斜入射下凹陷地形地震动分布特征[J]. 振动与冲击, 2017, 36(12): 88-92+98. DING Haiping, ZHU Chongyang, YU Yanyan. Characteristic of ground motions of a canyon topography under inclined P and SV waves[J]. Journal of Vibration and Shock, 2017, 36(12): 88-92+98. [3] WANG Duguo, SHI Peixin, ZHAO Chenggang. Two-dimensional in-plane seismic response of long-span bridges under oblique P-wave incidence[J]. Bulletin of Earthquake Engineering, 2019, 17(09): 5073–5099. [4] 刘琳,宋志强,王飞,等. 近断层SV波斜入射下沥青混凝土心墙坝响应分析[J]. 振动与冲击, 2021, 40(21):97-105. LIU Lin, SONG Zhiqiang, WANG Fei, et al. Response analysis of asphalt concrete core dam under oblique incidence of near-fault SV wave[J]. Journal of Vibration and Shock, 2021, 40(21): 97-105. [5] F García, J.J. Aznárez, L.A. Padrón, et al. Relevance of the incidence angle of the seismic waves on the dynamic response of arch dams[J]. Soil Dynamics and Earthquake Engineering, 2016, 90: 442-453. [6] 巴振宁,梁建文. 层状场地中凹陷地形Rayleigh波斜入射下三维地震响应分析[J]. 振动工程学报,2015,28(05):809-821. BA Zhenning, LIANG Jianwen. 3-D seismic responses for oblique incident Rayleigh waves of a canyon cut in a layered half-space[J]. Journal of Vibration Engineering, 2015,28(05):809-821. [7] 黄景琦,杜修力,田志敏,等.斜入射SV波对地铁车站地震响应的影响[J].工程力学,2014,31(09):81-88+103. HUANG Jingqi, DU Xiuli, TIAN Zhimin, et al. Effect of the oblique incidence of seismic SV waves on the seismic response of subway station Structure[J]. Engineering Mechanics, 2014, 31(09): 81-88+103.. [8] 齐文浩,陈龙伟,单振东,等. 芦山7.0级地震宏观场地效应[J]. 地震工程与工程振动,2013,33(04):29-34. QI Wenhao, CHEN Longwei, SHAN Zhendong, et al. Summary of macro-level site effects in M7.0 Lushan Earthquake[J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(04): 29-34. [9] 杨志,韩庆华,周全智,等. 多维多点激励下老山自行车馆屋盖结构的地震反应分析[J]. 天津大学学报(自然科学与工程技术版), 2007, 40(11): 1277-1283. YANG Zhi, HAN Qinghua, ZHOU Quanzhi, et al. Seismic response of the roof structure of laoshan cycling gymnasium under multi-dimensional and multi-point excitation[J]. Journal of Tianjin University(Science and Technology), 2007, 40(11): 1277-1283. [10] 薛素铎,刘毅,李雄彦. 土-结构动力相互作用研究若干问题综述[J]. 世界地震工程, 2013, 29(02): 1-9. XUE Suduo, LIU Yi, LI Xiongyan. Review of some problems about research on soil-structure dynamic interaction[J]. World Earthquake Engineering, 2013, 29(02): 1-9. [11] 刘毅,李雄彦,薛素铎. 地震动斜入射对桩-土-网壳结构地震响应影响[J]. 振动工程学报, 2015, 28(01): 139-147. LIU Yi,LI Xiongyan,XUE Suduo. The effect of oblique incidence of seismic wave on seismic response of pile-soil-latticed shell[J]. Journal of Vibration Engineering, 2015, 28(01): 139-147. [12] 韩庆华,何金明,刘铭劼. 考虑土-结构相互作用的空间网格结构地震响应分析[J]. 地震工程与工程振动, 2018, 38(02): 42-52. HAN Qinghua, HE Jinming, LIU Mingjie. Seismic response analysis of space frame structure considering soil-structure interaction[J]. Journal of Earthquake Engineering and Engineering Vibration, 2018, 38(02): 42-52. [13] 杜修力. 工程波动理论与方法[M]. 北京: 科学出版社, 2009: 370-374. DU Xiuli. Theories and methods of wave motion for engineering [M]. Beijing: Science Press, 2009: 370-374. [14] 徐芝纶. 弹性力学[M]. 北京: 高等教育出版社, 2016: 27-41. XU Zhilun. Elastic Mechanics[M]. Beijing: Higher Education Press, 2016: 27-41. [15] 刘晶波,王振宇,杜修力,等. 波动问题中的三维时域粘弹性人工边界[J]. 工程力学,2005,22(06):46-51. LIU Jingbo, WANG Zhenyu, DU Xiuli, et al. Three-dimensional visco-elastic artificial boundaries in time domain for wave motion problems[J]. Engineering Mechanics, 2005, 22(6): 46-51. [16] 何建涛,马怀发,张伯艳,等. 黏弹性人工边界地震动输入方法及实现[J]. 水利学报,2010,41(08):960-969. HE Jiantao, MA Huaifa, ZHANG Boyan, et al. Method and realization of seismic motion input of viscous-spring boundary[J]. Journal of Hydraulic Engineering, 2010, 41(08): 960-969. [17] HAN Qinghua, LIU Mingjie, LU Yan, et al. Progressive collapse analysis of large-span reticulated domes[J]. International Journal of Steel Structures, 2015, 15(02): 261-269. [18] 楼梦麟,邵新刚. 应用通用程序计算深覆盖土层地震反应的几个问题[J]. 振动与冲击,2015,34(04):63-68+109. LOU Menglin, SHAO Xingang. Several problems in seismic response calculation of soil layer with deep deposit using general software[J]. Journal of Vibration and Shock, 2015,34(04):63-68+109. [19] A. O. L. Kwok, J. P. Stewart, Y. M. A. Hashash, et al. Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133 (11): 1385-1398. [20] 吴体,熊峰,王永维. 土-结构相互作用体系自振频率计算模型[J]. 四川建筑科学研究,2006,32(02):95-99. WU Ti, XIONG Feng, WANG Yongwei. Research of model about soil-superstructure interaction system[J]. Sichuan Building Science, 2006, 32(02): 95-99. [21] GB50011-2010, 建筑抗震设计规范[S].北京:中国建筑工业出版社,2016. GB50011-2010, Code for seismic design of buildings[S]. Beijing: China Architecture Industry Press, 2016. [22] 张乾. 斜入射SV波作用下的场地效应[D]. 西安: 西安理工大学, 2021. ZHANG Qian. Site effect of oblique incident SV wave[D]. Xi’an: Xi’an University of Technology, 2021. [23] 李伟华,赵成刚. 饱和土沉积谷场地对平面SV波的散射问题的解析解[J]. 地球物理学报,2004, 47(05): 912-920. LI Weihua, ZHAO Chenggang. Scattering of plane SV waves by circular-arc alluvial valleys with saturated soil deposits[J]. Chinese Journal of Geophysics, 2004, 47(05): 912-920.

PDF(3599 KB)

Accesses

Citation

Detail

段落导航
相关文章

/