边坡安全监测GPS-RTK信号的降噪算法研究

董是1,龙志友1,王建伟1,邵永军2,杨超2,左琛1,马少华3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 265-275.

PDF(4345 KB)
PDF(4345 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 265-275.
论文

边坡安全监测GPS-RTK信号的降噪算法研究

  • 董是1,龙志友1,王建伟1,邵永军2,杨超2,左琛1,马少华3
作者信息 +

Denoising algorithm for GPS-RTK signals in slope safety monitoring

  • DONG Shi1, LONG Zhiyou1, WANG Jianwei1, SHAO Yongjun2, YANG Chao2, ZUO Chen1, MA Shaohua3
Author information +
文章历史 +

摘要

全球定位系统实时动态差分技术(global positioning system-real time kinematic,GPS-RTK)是解决路基边坡安全监测问题的重要手段,但GPS-RTK信号易受到多路径误差和共模误差的影响。基于小波变换(wavelet transform,WT)和主成分分析(principal component analysis,PCA)分别可以有效去除多路径误差和共模误差,提出WT-PCA算法去除信号误差。首先设置仿真信号,通过参数调优进一步提高单一算法的降噪效果。其次提出组合算法WT-PCA改进单一算法的缺陷,并与其他组合算法进行对比分析。最后,对十天高速路基边坡的GPS-RTK监测数据进行实例分析。结果表明:WT-PCA算法的信噪比和均方根误差较于WT-VMD优于66%和50%左右,算法可以有效地消除GPS-RTK信号的多路径误差和共模误差影响。提高边坡位移监测信号处理精度,进一步评估边坡结构形变及安全状态。

Abstract

The global positioning system real-time dynamic differential technology (GPS-RTK) is an important tool to solve the problem of roadbed slope safety monitoring, but the GPS-RTK signal is susceptible to multi-path error and common-mode error. Based on the wavelet transform (WT) and principal component analysis (PCA) can effectively remove multi-path error and common-mode error, respectively, the WT-PCA algorithm is proposed to remove the signal error. Firstly, the simulated signal is set up and the noise reduction effect of a single algorithm is further improved by parameter tuning. Secondly, the combined algorithm WT-PCA is proposed to improve the defects of the single algorithm and compared with other combined algorithms for analysis. Finally, the GPS-RTK monitoring data of the slope of the roadbed of the Shi-Tian highway is analyzed by example. The results show that the signal-to-noise ratio and root mean square error of WT-PCA algorithm are better than WT-VMD by about 66% and 50%, and the algorithm can effectively eliminate the influence of multi-path error and common mode error of GPS-RTK signal. It improves the accuracy of slope displacement monitoring signal processing and further evaluates the structural deformation and safety status of slopes.

关键词

信号降噪 / 全球定位系统实时动态差分技术(GPS-RTK) / 主成分分析(PCA)噪声压缩 / 组合算法降噪

Key words

Signal Noise Reduction / Global Positioning System - Real Time Kinematic (GPS-RTK) / Principal Component Analysis (PCA) Noise Compression / Combination Algorithm Noise Reduction

引用本文

导出引用
董是1,龙志友1,王建伟1,邵永军2,杨超2,左琛1,马少华3. 边坡安全监测GPS-RTK信号的降噪算法研究[J]. 振动与冲击, 2024, 43(3): 265-275
DONG Shi1, LONG Zhiyou1, WANG Jianwei1, SHAO Yongjun2, YANG Chao2, ZUO Chen1, MA Shaohua3. Denoising algorithm for GPS-RTK signals in slope safety monitoring[J]. Journal of Vibration and Shock, 2024, 43(3): 265-275

参考文献

[1] Raza S, Al-Kaisy A, Teixeira R, et al. GNSS-RTN Role in Transportation Applications: An Outlook[C]. International Conference on Transportation and Development 2022. 2022: 182-195. [2] 顾铁, 李萌, 严丽. 高频GPS坐标时序的噪声特性分析[J].地震工程学报, 2017, 39(05): 963-968. Gu T, Li M, Yan L. Analysis of noise characteristics of high-frequency GPS coordinate timing[J]. China Earthquake Engineering Journal, 2017, 39(05): 963-968. [3] 姜卫平, 梁娱涵, 余再康, 等. 卫星定位技术在水利工程变形监测中的应用进展与思考[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1625-1634. Weiping J, Enterhan L, Zaikang Y, et al. Progress and reflection on the application of satellite positioning technology in water conservancy project deformation monitoring[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1625-1634. [4] King M A, Watson C S, White D. GPS rates of vertical bedrock motion suggest Late Holocene Ice‐Sheet readvance in a critical sector of East Antarctica[J]. Geophysical Research Letters, 2022, 49(4): e2021GL097232. [5] 严丽, 罗正东, 李萌, 等. GPS坐标时序共模误差提取方法研究[J]. 全球定位系统, 2022, 47(06): 54-59. Yan L, Luo ZD, Li M, et al. Research on the extraction method of GPS coordinate time series common mode error[J]. GNSS World of China, 2022, 47(06): 54-59. [6] 王剑辉, 符彦, 韩菲. 区域滤波方法在IGS台站时间序列分析中的应用[J].测绘地理信息, 2021, 46(04):27-31. Jianhui W, Yan F, Fei H. A regional filtering approach for IGS stations. Application of regional filtering method in time series analysis of IGS stations[J]. Journal of Geomatics, 2021, 46(04): 27-31. [7] 陈实, 熊春宝, 庞红星. 超高层建筑振动信号降噪算法研究[J]. 导航定位学报, 2022, 10(01): 135-139. Chen S, Xiong C, Pang HX. Research on vibration signal noise reduction algorithm for super high-rise buildings[J]. Journal of Navigation and Positioning, 2022, 10(01): 135-139. [8] 曹璐, 解威威, 唐睿楷, 等. EEMD与WT在桥梁GNSS数据降噪中的对比应用[J]. 噪声与振动控制, 2021 ,41(04): 73-79+281. Cao L, Weiwei X, Ruikai T, et al. Comparative application of EEMD and WT in bridge GNSS data noise reduction[J]. Noise and Vibration Control, 2021 ,41(04): 73-79+281. [9] 卿龙, 袁林果, 郝景恺, 等. 台湾连续GPS网主成分空间滤波分析[J]. 大地测量与地球动力学, 2020, 40(08): 838-842. Qing L, Linguo Y, Jingkai H, et al. Spatial filtering analysis of principal components of continuous GPS network in Taiwan[J]. Journal of Geodesy and Geodynamics, 2020, 40(08): 838-842. [10] 赖慧斌. 一种组合EEMD与PCA的GPS台站噪声消除方法[J]. 测绘地理信息, 2022, 47(03): 20-22. Huibin L. A GPS station noise cancellation method combining EEMD and PCA[J]. Journal of Geomatics, 2022, 47(03): 20-22. [11] 黎标幸, 夏海英, 宋树祥, 等.GPS/BDS组合的RTK多路径抑制方法[J]. 电子测量与仪器学报, 2022, 36(07) : 199-205. Biaoxing L, Haiying X, Shuxiang S, et al. A combined GPS/BDS method for RTK multipath suppression [J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(07) : 199-205. [12] Guo S, Yu X, Fengyang L, et al. A combined filtering method for weakening GNSS multipath errors (in English)[J]. Journal of Southeast University(English Edition), 2022,38(02):178-185. [13] 朱建军, 章浙涛, 匡翠林, 等. 一种可靠的小波去噪质量评价指标[J]. 武汉大学学报(信息科学版), 2015, 40(05):688-694. Zhu JJ, Zhang ZT, Kuang CRL, et al. A reliable wavelet denoising quality evaluation index[J]. Geomatics and Information Science of Wuhan University, 2015, 40(05):688-694. [14] Chen J , Wang L , Wang P , et al. Failure mechanism investigation on loess–mudstone landslides based on the Hilbert–Huang transform method using a large-scale shaking table test[J]. Engineering Geology, 2022, 302:106630-. [15] Chen W , Xiong C , Yu L , et al. Dynamic monitoring of an offshore jacket platform based on RTK-GNSS measurement by CF-CEEMDAN method[J]. Applied Ocean Research, 2021, 115(3):102844. [16] Akan A , Cura O K . Time–frequency signal processing: Today and future[J]. Digital Signal Processing. [17] 刘荣伟, 何伟挺, 汪琳琳, 等.基于CEEMD-LSTM的离心泵偏工况诊断方法研究[J].振动与冲击, 2022, 41(19): 114-121. Liu RW, He WT, Wang LL, et al. Study of CEEMD-LSTM-based diagnosis method for centrifugal pump bias conditions[J]. Journal of vibration and shock, 2022, 41(19): 114-121. [18] Xu H, Lu T, Montillet J P, et al. An Improved Adaptive IVMD-WPT-Based Noise Reduction Algorithm on GPS Height Time Series[J]. Sensors, 2021, 21(24): 8295. [19] 罗亦泳, 陈强, 黄城. 基于经验小波变换的GNSS多路径误差改正[J]. 大地测量与地球动力学, 2020, 40(11): 1153-1157. Yiyong L, Qiang C, Cheng H. GNSS multipath error correction based on empirical wavelet transform[J]. Journal of Geodesy and Geodynamics, 2020, 40(11): 1153-1157. [20] Xi R, Qin Y, Jiang W, et al. Water Level Retrieval Using a posteriori Residual of GNSS Pseudorange and Carrier-Phase Observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-13. [21] 王亚伟. 基于非差改正数的多GNSS多路径误差恒星日滤波方法研究[D]. 武汉: 武汉大学, 2019. [22] 蒋沅, 上官彪, 曾竞凯. 基于EEMD的改进小波阈值算法在超声水表中的应用[J]. 振动与冲击, 2022, 41(05): 208-213. Jiang Y, Biao S G, Jingkai Z. Application of improved wavelet thresholding algorithm based on EEMD in ultrasonic water meters [J]. Journal of vibration and shock, 2022, 41(05): 208-213. [23] 熊春宝, 王猛, 于丽娜. 桥梁GNSS-RTK变形监测数据的CEEMDAN-WT联合降噪法[J]. 振动与冲击, 2021, 40(09): 12-18. Xiong C, Wang M, Yu LN. Joint CEEMDAN-WT noise reduction method for GNSS-RTK deformation monitoring data of bridges[J]. Journal of vibration and shock, 2021, 40(09): 12-18. [24] 李元, 谢植, 王纲. 基于故障重构的PCA模型主元数的确定[J]. 东北大学学报, 2004(01): 20-23. Yuan L, Zhi X, Gang W. Determination of the number of primary elements of PCA model based on fault reconstruction [J]. Journal of Northeastern University(Natural Science), 2004(01): 20-23.

PDF(4345 KB)

Accesses

Citation

Detail

段落导航
相关文章

/