一种局域共振型声学超材料的半解析建模与带隙机制研究

赵振成1,2,张涵柯1,2,郑玲1,2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 27-36.

PDF(3195 KB)
PDF(3195 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 27-36.
论文

一种局域共振型声学超材料的半解析建模与带隙机制研究

  • 赵振成1,2,张涵柯1,2,郑玲1,2
作者信息 +

Semi-analytical modeling and bandgap mechanism of a local resonance type acoustic metamaterial

  • ZHAO Zhencheng1,2, ZHANG Hanke1,2, ZHENG Ling1,2
Author information +
文章历史 +

摘要

基于声学黑洞(acoustic black hole,ABH)弧形梁体积小且模态频率丰富的特点,将声学黑洞弧形梁作为附加结构周期分布在直梁上,达到促进局域共振效应和拓宽低频带隙的作用,由此构建一种新的局域共振型声学超材料。针对局域共振型超材料,采用高斯展开法,建立其半解析理论分析模型,基于零空间法处理其内部连接以及周期边界条件,并通过有限元法验证半解析理论分析模型的准确性。分析和计算其能带结构,研究结构参数以及ABH效应对布拉格带隙以及局域共振带隙的影响机理。研究结果表明,该半解析理论模型能够对结构的带隙进行有效计算,附加弧形ABH的陷波机制能够促进结构的局域共振效应并对主梁进行有效减振,为声学黑洞声学超材料的应用提供了新的思路。

Abstract

Based on the characteristics of ABH (acoustic black hole) arc beam with small volume and rich modal frequencies, ABH (acoustic black hole) arc beam is periodically distributed on the straight beam as an additional structure and coupled with the straight beam to promote the local resonance effect and broaden the low-frequency band gap, and a new local resonance acoustic metamaterial is constructed. For local resonant metamaterials, the semi analytical theoretical analysis model is established by using the Gaussian expansion method. The internal connection and periodic boundary conditions are treated based on the null space method. The accuracy of the semi analytical theoretical analysis model is verified by the finite element method. The energy band structure is analyzed and calculated, and the influence mechanism of structural parameters and ABH effect on Bragg band gap and local resonance band gap is studied. The results show that the semi analytical theoretical model can effectively calculate the band gap of the structure, and the notch mechanism with arc ABH can promote the local resonance effect of the structure and effectively reduce the vibration of the main beam.

关键词

ABH / 局域共振 / 声学超材料 / 低频带隙

Key words

ABH / local resonant / acoustic metamaterial / low frequency bandgap

引用本文

导出引用
赵振成1,2,张涵柯1,2,郑玲1,2. 一种局域共振型声学超材料的半解析建模与带隙机制研究[J]. 振动与冲击, 2024, 43(3): 27-36
ZHAO Zhencheng1,2, ZHANG Hanke1,2, ZHENG Ling1,2. Semi-analytical modeling and bandgap mechanism of a local resonance type acoustic metamaterial[J]. Journal of Vibration and Shock, 2024, 43(3): 27-36

参考文献

[1] KE D, DING Y, HE Z, et al. Theoretical study of subwavelength imaging by acoustic metamaterial slabs[J]. Journal of Applied Physics, 2009, 105(12):788. [2] ZHAO G, SHI K, ZHONG S. Research on Array Structures of Acoustic Directional Transducer. MATHEMATICAL PROBLEMS IN ENGINEERING. 2021;2021. [3] CAO L, YANG Z, XU Y, ASSOUAR B. Deflecting flexural wave with high transmission by using pillared elastic metasurface. SMART MATERIALS AND STRUCTURES. 2018;27(7). [4] MARTIN A , KADIC M , SCHITTNY R , et al. Phonon band structures of three-dimensional pentamode metamaterials[J]. Physical Review B Condensed Matter, 2012, 86(15):4172-4181. [5] JIN Y, WANG W, KHELIF A, DJAFARI-ROUHANI B. Elastic Metasurfaces for Deep and Robust Subwavelength Focusing and Imaging. PHYSICAL REVIEW APPLIED. 2021;15(2). [6] DONG H-W, ZHAO S-D, WANG Y-S, ZHANG C. Broadband single-phase hyperbolic elastic metamaterials for super-resolution imaging[J]. SCIENTIFIC REPORTS, 2018, 8. [7] SCHURIG D, MOCK J, JUSTICE B, CUMMER S, PENDRY J, STARR A, SMITH D. Metamaterial electromagnetic cloak at microwave frequencies[J]. SCIENCE, 2006, 314(5801): 977–980. [8] 牛嘉敏,吴九汇.非对称类声学超材料的低频宽带吸声特性[J].振动与冲击,2018,37(19):45-49+68. NIU Jiahui, WU Jiuhui. Low frequency wide band sound absorption performance of asymmetric type acoustic metamaterials [J]. Journal of Vibration and Shock, 2018,37(19):45-49+68. [9] 冯涛,王余华,王晶,黄志刚.结构型声学超材料研究及应用进展[J].振动与冲击,2021,40(20):150-157. FENG Tao, WANG Yuhua, WANG Jing, HUANG Zhigang. Progress in research and application of structural acoustic metamaterials [J]. Journal of Vibration and Shock, 2021,40(20):150-157. [10] 万志威,朱翔,李天匀,李敬.含压电分流阻尼的声学黑洞梁振动特性研究[J].振动与冲击,2022,41(09):113-119+135. WAN Zhiwei, ZHU Xiang, LI Tianyun, LI Jing. Vibration characteristics of acoustic black hole beam with piezoelectric shunt damping [J]. Journal of Vibration and Shock, 2022,41(09):113-119+135. [11] DENG J, ZHENG L, GAO N. Broad band gaps for flexural wave manipulation in plates with embedded periodic strip acoustic black holes[J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2021, 224. [12] LIAN X , WANG S , LIU M, et al. Study on low frequency sound insulation characteristic of thin acoustic black hole[J]. Modern Physics Letters B, 2021:2150198. [13] TANG L, CHENG L, CHEN K. Complete Sub-Wavelength Flexural Wave Band Gaps in Plates with Periodic Acoustic Black Holes[J]. Journal of Sound and Vibration, 2021, 502(3):116102. [14] YAN S L, LOMONOSOV A, SHEN Z H. Evaluation of an acoustic black hole’s structural characteristics using laser-generated Lamb waves[J]. Laser Physics Letters, 2016, 13(2): 025003. [15] ZHOU T, TANG L, JI H, et al. Dynamic and Static Properties of Double-Layered Compound Acoustic Black Hole Structures[J]. International Journal of Applied Mechanics, 2017, 9(05):1750074. [16] TANG L, CHENG L. Ultrawide band gaps in beams with double-leaf acoustic black hole indentations[J]. The Journal of the Acoustical Society of America, 2017, 142(5):2802-2807. [17] GAO N, WANG B, LU K, et al. Complex band structure and evanescent Bloch wave propagation of periodic nested acoustic black hole phononic structure[J]. Applied Acoustics, 2021, 177(3). [18] GAO N, WEI Z, HOU H, et al. Design and experimental investigation of V-folded beams with acoustic black hole indentations[J]. The Journal of the Acoustical Society of America, 2019, 145(1):EL79-83. [19] GAO N, GUO X, DENG J, et al. Elastic wave modulation of double-leaf ABH beam embedded mass oscillator[J]. Applied Acoustics, 173. [20] JI H, WANG N, ZHANG C, et al. A Vibration Absorber Based on Two-dimensional Acoustic Black Holes[J]. Journal of Sound and Vibration, 2021, 500:116024. [21] TONG Z, LI C. A resonant beam damper tailored with Acoustic Black Hole features for broadband vibration reduction[J]. Journal of Sound and Vibration, 2018, 430:174-184. [22] 宋婷婷,郑玲,邓杰.基于高斯展开法的周期声学黑洞宽频能量回收特性研究[J].振动与冲击,2022,41(10):186-195. SONG Tingting, ZHENG Ling, DENG Jie. Gaussian expansion method used in a nalysing the broadband energy harvesting characteristics of periodic acoustic black holes [J]. Journal of Vibration and Shock, 2022,41(10):186-195. [23] LI M, DENG J, ZHENG L, XIANG S. Vibration mitigation via integrated acoustic black holes[J]. Applied Acoustics, 2022, 198: 109001. [24] DENG J, XU Y, GUASCH O, GAO N, TANG L. Nullspace technique for imposing constraints in the Rayleigh-Ritz method[J]. JOURNAL OF SOUND AND VIBRATION, 2022, 527. [25] TANG L, CHENG L. Broadband locally resonant band gaps in periodic beam structures with embedded acoustic black holes[J]. Journal of Applied Physics, 2017, 121(19):605. [26] ZHANG, CHUNYU, XIANGLONG, et al. Vibration analysis of circular cylindrical double-shell structures under general coupling and end boundary conditions[J]. Applied acoustics, 2016. [27] YU D, WEN J, ZHAO H, et al. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid[J]. Journal of Sound & Vibration, 2008, 318(1-2):193-205. [28] YAN S L, LOMONOSOV A, SHEN Z H. Evaluation of an acoustic black hole’s structural characteristics using laser-generated Lamb waves[J]. Laser Physics Letters, 2016, 13(2): 025003. [29] JIE DENG, NANSHA GAO, LILING TANG, et al. Vibroacoustic mitigation for a cylindrical shell coupling with an acoustic black hole plate using Gaussian expansion component mode synthesis,[J]. Composite Structures, 2022, 298, 116002.

PDF(3195 KB)

Accesses

Citation

Detail

段落导航
相关文章

/