针对特种车辆行驶调平问题,提出基于动态基准的低复杂度控制方法。整车被分解为由作动器驱动的带有相互耦合特性的悬架节点。建立悬架节点动力学模型,将基于整车行驶动力学模型的位姿混合控制问题,转换为基于全驱型悬架节点动力学模型的单纯位移控制问题。提出并构建动态基准和基准误差,解决现有方法对车身铅垂高依赖和限制的技术瓶颈,同时提高车辆的通过性能。建立基于基准误差的扩张状态观测器,实现动态解耦,并提出一种低复杂度行驶调平控制方法。借助汽车系统仿真软件Carsim验证本文方法的有效性。结果表明,与经典基于常值基准的整车型控制方法对比,在所提出方法作用下,车辆的行驶调平精度提高了1个数量级;特别是在路面激励幅度超过作动器行程的工况下,车辆的舒适性和安全性尤为改善。
Abstract
Aiming at the driving leveling problem of special equipment vehicles, a dynamic reference-based low complexity control method is proposed. Firstly, the whole vehicle is decomposed into coupled suspension nodes driven by actuators. The dynamic model of the suspension node is established. And the hybrid control problem of position and attitude based on the vehicle vertical dynamics model is transformed into a simple displacement control problem based on the fully actuated node dynamics model. Secondly, the dynamic reference and its error are proposed and constructed. Then the technical bottleneck is solved which the existing method relies on and restricts the vehicle body’s vertical height, meanwhile, the passing ability of the vehicle is improved. Finally, the effectiveness of the proposed method is verified by the vehicle system simulation software Carsim. The results show that, compared with the classical constant-reference-based control method of the whole vehicle, the driving leveling accuracy is promoted by 1 order of magnitude under the effect of the proposed method; Especially when the road excitation amplitude exceeds the designed dynamic deflection of the actuator, the comfort and safety of the vehicle are both improved particularly.
关键词
特种装备车辆 /
主动悬架 /
行驶调平 /
动态基准 /
低复杂度 /
扩张状态观测器
{{custom_keyword}} /
Key words
special equipment vehicle /
active suspension /
driving leveling /
dynamic reference /
low complexity /
extended state observer
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1].郭超凯. 揭秘“大火箭”活动发射平台三个之最:定位精度可达毫米级 [N/OL]. 中国新闻网; 2020 [2020-07-17]. Available from: https://www.chinanews.com.cn/gn/2020 /07-17/9240863.shtml.
GUO C. Uncover the three most important aspects of the ‘big rocket’ mobile launch platform: the positioning accuracy can reach the millimeter level. [N/OL]. Chinanews Online. [2020-07-17]. https://www.chinanews.com.cn/gn /2020/07-17/9240863.shtml.
[2].王麒淦, 冯静安, 余希胜, 宋宝. 高地隙喷雾机车液耦合作业平顺性优化[J]. 振动与冲击. 2021;40(16):140-50.
WANG Q,FENG J,YU X,SONG B. Optimization of operation ride comfort for locomotive-liquid-road coupling of high-clearance sprayer[J]. Journal of Vibration and Shock, 2021, 40(16): 140-50.
[3].武秀恒, 秦嘉浩, 杜岳峰, 宋正河, 陈雨, 谢斌. 高地隙喷雾机主动空气悬架减振控制与实验[J]. 农业机械学报. 2018;49(6):60-7.
WU X, QIN J, DU Y, SONG Z, CHEN Y, XIE B. Experiments of vibration control for active pneumatic suspension system in high clearance self-propelled sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery. 2018;49(6):60-7.
[4].Ahmad I, GE X, HAN Q. Decentralized dynamic event-triggered communication and active suspension control of in-wheel motor driven electric vehicles with dynamic damping[J]. IEEE-CAA Journal of Automatica Sinica. 2021;8(5):971-86.
[5].庞辉, 王延, 刘凡. 考虑参数不确定性的主动悬架H2/H∞保性能控制[J]. 控制与决策.2019;34(3):470-8.
PANG H, WANG Y, LIU F. H2/H∞ guaranteed cost control for active suspensions considering parameter uncertainty[J]. Control and Decision. 2019;34(3):470-8.
[6].寇发荣、高亚威、景强强、彭先龙、王星. 基于路面等级自适应的主动悬架LQG控制[J]. 振动与冲击. 2020;39(23):30-7.
KOU F, GAO Y, JING Q, PENG X, WANG X. LQG control of active suspension based on adaptive road surface level[J]. Journal of Vibration and Shock. 2020;39(23):30-7.
[7].陈双, 宗长富, 刘立国. 主动悬架车辆平顺性和操纵稳定性协调控制的联合仿真[J]. 汽车工程. 2012;(9):791-7.
CHEN S, ZONG C, LIU L. Co-simulation on the coordinated control of ride comfort and handling stability of vehicles with active suspension[J]. Automotive Engineering. 2012;(9):791-7.
[8].段建民、黄小龙、陈阳舟. 具有输入时滞的主动悬架鲁棒补偿控制[J]. 振动与冲击. 2020;39(24):254-63+77.
DUAN J, HUANG X, CHEN Y. Robust compensation control for active suspension subject to input delay. Journal of Vibration and Shock, 2020, 39(24): 254-63+77.
[9].寇发荣, 贺嘉杰, 李孟欣, 许家楠, 武大鹏. 基于路面识别的电磁混合式悬架自适应模糊控制[J]. 振动与冲击. 2023;42(2):303-11.
KOU F, HE J, LI M, XU J, WU D. Adaptive fuzzy control of an electromagnetic hybrid suspension based on road recognition. Journal of Vibration and Shock, 2023, 42(2): 303-311.
[10].El Majdoub K, Giri F, Chaoui F-Z. Adaptive backstepping control design for semi-active suspension of half-vehicle with magnetorheological damper[J]. IEEE-CAA Journal of Automatica Sinica. 2021;8(3):582-96.
[11].Yoon DS, Kim GW, Choi SB. Response time of magnetorheological dampers to current inputs in a semi-active suspension system: Modeling, control and sensitivity analysis[J]. Mechanical Systems and Signal Processing. 2021;146:106999:1-21.
[12].董绪斌. 基于电液伺服主动悬架的车身位姿稳定性控制研究[D] [博士]: 吉林大学; 2017.
DONG X. Research on vehicle attitude stability control with electro hydraulic servo active suspension[D]. Jilin University. 2017.
[13].杜苗苗. 多轴应急救援车辆主动悬架系统的控制策略研究[D] [博士]: 吉林大学; 2021.
DU M. Control strategy research on active suspension system of multi-axle emergency rescue vehicles [D]. Jilin University. 2021.
[14].Sun W, Gao H, Kaynak O. Adaptive backstepping control for active suspension systems with hard constraints[J]. IEEE-ASME Transactions on Mechatronics. 2013;18(3):1072-9.
[15].Kilicaslan S. Control of active suspension system considering nonlinear actuator dynamics[J]. Nonlinear Dynamics. 2018;91:1383–94.
[16].Youn I, Im J, Tomizuka M. Level and attitude control of the active suspension system with integral and derivative action[J]. Vehicle System Dynamics. 2006;44(9):659-74.
[17].Yu M, Evangelou SA, Dini D. Parallel active link suspension: full car application with frequency-dependent multiobjective control strategies[J]. IEEE Transactions on Control Systems Technology.. In press 2021.
[18].Zhang H, Zheng X, Li H, Wang Z, Yan H. Active Suspension System Control With Decentralized Event-Triggered Scheme[J]. IEEE Transactions on Industrial Electronics. 2020;67(12):10798-808.
[19].Yoon D-S, Kim G-W, Choi S-B. Response time of magnetorheological dampers to current inputs in a semi-active suspension system: Modeling, control and sensitivity analysis[J]. Mechanical Systems and Signal Processing. 2021;146:106999.
[20].Na J, Huang Y, Pei Q, Wu X, Gao G, Li G. Active Suspension Control of Full-Car Systems Without Function Approximation[J]. IEEE-ASME Transactions on Mechatronics. 2020;25(2):779-91.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}