CMG框架伺服控制与隔振器耦合稳定性分析

潘望白1,吕亮亮1,王董华2,刘钰1,方贤亮1,吴琳娜1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 287-294.

PDF(2609 KB)
PDF(2609 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 287-294.
论文

CMG框架伺服控制与隔振器耦合稳定性分析

  • 潘望白1,吕亮亮1,王董华2,刘钰1,方贤亮1,吴琳娜1
作者信息 +

Stability analysis on CMG gimbal servo control and vibration isolator coupling

  • PAN Wangbai1, L Liangliang1, WANG Donghua2, LIU Yu1, FANG Xianliang1, WU Linna1
Author information +
文章历史 +

摘要

控制力矩陀螺(control moment gyroscope,CMG)是飞行器在轨姿态控制的重要执行机构之一,通过内部高速旋转的飞轮储存角动量,利用伺服机构驱动框架旋转输出力矩。安装隔振器可有效减少由高速旋转飞轮产生的不平衡力对飞行器上高精度载荷的影响。建立伺服机构三环控制模型和一个单自由度隔振器模型,揭示了隔振器引起伺服系统速度环耦合失稳的现象。通过分析隔振器频率、阻尼比、惯量等关键设计参数对速度环稳定性的影响,对隔振器进行详细设计,试验结果全流程验证了考虑伺服机构控制稳定性的CMG隔振器设计流程和隔振效果,为同类型产品设计提供了工程经验。

Abstract

Control moment gyroscope (CMG) is one important kind of actuators for on-orbit attitude control of the spacecraft. It stores the angular momentum by the high speed rotating flywheel and produces moment through rotating the gimbal by a servo mechanism. The vibration isolator can effectively reduce the influence on the high precision payloads caused by the unbalanced load from the rotating flywheel. A typical triple closed-loop control model of servo mechanism and an isolator with single degree of freedom are established to reveal that isolator can cause the instability of the speed loop in servo control system. Analysis and discussion on the influence of the stability, corresponding to the key design parameters of isolator, including frequency, damping ratio and inertia, are provided for detailed isolator design. Experiment results fully verify the entire design procedure and isolation effectiveness of a CMG isolator considering control stability, providing practical engineering experience for the design of similar products.

关键词

控制力矩陀螺 / 隔振器 / 伺服控制 / 稳定性分析

Key words

control moment gyroscope / vibration isolator / servo control / stability analysis

引用本文

导出引用
潘望白1,吕亮亮1,王董华2,刘钰1,方贤亮1,吴琳娜1. CMG框架伺服控制与隔振器耦合稳定性分析[J]. 振动与冲击, 2024, 43(3): 287-294
PAN Wangbai1, L Liangliang1, WANG Donghua2, LIU Yu1, FANG Xianliang1, WU Linna1. Stability analysis on CMG gimbal servo control and vibration isolator coupling[J]. Journal of Vibration and Shock, 2024, 43(3): 287-294

参考文献

[1] 李海涛,房建成. 基于CMAC的CMG框架伺服系统摩擦补偿方法研究[J]. 系统仿真学报, 2008, 20(7): 1887-1891. LI Hai-tao, FANG Jian-cheng. Friction Compensation Based on CMAC for Gimbal Servo System Used in CMG [J]. Journal of System Simulation, 20(7): 1887-1891. [2] 孙丹峰,周华俊,李晟,等. 控制力矩陀螺高精度框架控制技术[J]. 电子测量技术, 2016, 39(11): 19-25. SUN Dan-feng, Zhou Hua-jun, Li Cheng, et al. High Precision Control Technology of SGCMG Gimbal System [J]. Electronic Measurement Technology, 2016, 39(11): 19-25 [3] 魏新生,孙丹峰,申友涛,等. 基于模糊PID的控制力矩陀螺外框架控制技术[J]. 航空精密制造技术, 2018, 03:29-33. WEI Xin-sheng, SUN Dan-feng, Shen You-tao, et al. Control Technology of CMG Gimbal System Based on Fuzzy-PID Control [J]. Aviation Precision Manufacturing Technology, 2018, 03:29-33 [4] 李青,李静,冯咬齐,等. 航天器微振动一体化建模与控制研究[J]. 机械科学与技术, 2017, 36(9): 1464-1471. LI Qing, LI Jing, FENG Yao-qi, et al. Integrated Micro-vibration Modeling and Control Investigation of Spacecrafts [J]. Mechanical Science and Technology for Aerospace Engineering,2017, 36(9): 1464-1471. [5] WU Deng-yun, Tao Xie, LU Ming, et al, Modeling and Experimental Study on the Micro-Vibration Transmission of a Control Moment Gyro [J]. IEEE Access, 2019, 7:80633. [6] 武耀,谢一村,晏廷飞,等. 空间站控制力矩陀螺微振动测试技术[J]. 装备环境工程, 2018, 15(8):94-99 WU Yao, XIE Yi-Cun, YAN Yan-fei, et al. Micro-vibration Testing Technology of Space Station Control Moment Gyroscope [J]. Equipment Environmental Engineering 2018, 15(8):94-99. [7] 冯振伟,崔玉福,李琳琳,等. 基于微振动对成像质量影响的CMG微振动抑制方法[J]. 航天器环境工程, 2019, 36(5):444-449. FENG Zhen-wei, CUI Yu-fu, LI Lin-lin, et al. Isolation of Micro-vibration for CMG with Consideration of the Influence of Micro-vibration on Image Quality [J]. Spacecraft Environment Engineering, 2019, 36(5):444-449 [8] 王嘉登,张高雄,茅敏,等. 卫星控制力矩陀螺微振动抑制装置的动力学建模与实验研究[J]. 振动与冲击, 2021, 40(1):1-7. WANG Jia-deng, ZHANG Gao-xiong, MAO Min, et al. Dynamic Modeling and Tests of a Micro Vibration Suppression Device for Satellite Control Moment Gyroscope [J]. Journal of Vibration and Shock, 2021, 40(1):1-7. [9] 石声浩. 航天器单框架控制力矩陀螺微振动隔离方法研究[D]. 长沙: 国防科技大学, 2014. [10] 虞自飞,周徐斌,申军烽,等. 卫星控制力矩陀螺用振动隔振装置[P]. 中国CN105035362, 2015. [11] LUO Min, WU Qiong, LUO Wen-bo, et al. Design of Passive Launch and On-orbit Vibration Isolation System for Control Moment Gyroscopes [J]. International Journal of Space Science and Engineering, 2019, 5(4):355-368. [12] 罗敏,吴琼,罗文波,等. 一种并联桁架式控制力矩陀螺群减隔振装置[P]. 中国CN106005484, 2016. [13] 虞自飞,周徐斌,满孝颖,等. 卫星控制力矩陀螺群用微振动并联隔振装置[P]. 中国CN104443436, 2015. [14] 徐张凡,潘松,陈雷,等. 柔性隔振结构影响下控制力矩陀螺的动力学建模与仿真[J]. 空间控制技术与应用, 2020, 46(4):1-6,14. XU Zhang-fan, PAN Song, Chen Lei, et al. Dynamic Modeling and Analysis of the CMG Considering the Influence of the Vibration Isolator [J]. Aerospace Control and Application, 2020, 46(4):1-6,14. [15] 廖宝鹏,臧旭,于开平,等. 考虑姿态控制的控制力矩陀螺微振动抑制研究[J]. 强度与环境, 2020, 47(4): 7-14. LIAO Bao-peng, ZANG Xu, YU Kai-ping, et al. Research on the Micro-vibration Suppression for Control Moment Gyro Considering Satellite Attitude Control System [J]. Structure & Environment Engineering, 2020, 47(4): 7-14. [16] 余漆. 陀螺框架驱动系统设计[D]. 哈尔滨:哈尔滨工业大学, 2017. [17] 于跃. 高分辨遥感卫星单框架控制力矩陀螺伺服控制技术研究[D]. 长春:中科院长春光学精密机械与物理研究所, 2021.

PDF(2609 KB)

292

Accesses

0

Citation

Detail

段落导航
相关文章

/