采用人工通电加速腐蚀的方法模拟混凝土梁内预应力钢筋的自然断裂过程从而获得真实的断丝声发射信号,应用高频声发射传感器和分布式光纤监测系统从水下采集预应力钢筋断裂时产生的声信号,分析信号的时频域特征和时域统计特征参数,结果表明:断丝信号的超声波段在水中传播时发生频散,应采用20kHz以下的时域统计特征识别断丝信号;铠装光缆可以接收到在水中传播的断丝信号,其在时频图上表现为一条竖直的条带,并且能量主要集中分布于100~200Hz。采用时域统计特征参数分析光纤监测信号时,需要设定较小的门槛值截取信号进行分析;对于光纤水声监测工况来说,峰值指标的信噪比较低,裕度和峭度指标更适合于用来识别断丝信号。本研究为开发预应力混凝土结构断丝水下声光纤监测系统奠定了基础。
Abstract
To obtain the actual acoustic emission signal of the corrosion fracture of prestressing steel in concrete beam, the galvanostatic method is applied to simulate the natural corrosion and artificially accelerate the process. High frequency acoustic emission sensors and distributed optical fiber monitoring system are used to collect the acoustic signals underwater when prestressed steel wires are broken. Signal are statistically analyzed in time domain and time-frequency domain. Test results show that only the time domain statistic characteristics below 20kHz can be used to identify the wire fracture, as the frequency dispersion occurs when the ultrasonic band of the wire-breakage signal propagates in the water. The fracture signal propagating in water can be received by the armored optical cable, which appears as a vertical band in the time-frequency diagram, and the energy is mainly concentrated in 100~ 200Hz. Small threshold should be set to intercept the signal from optical fiber monitoring system for the statistical analysis in time domain. For underwater condition, the signal-to-noise ratio of the peak index is low, and the margin and kurtosis index are more suitable for identifying fracture signal. This research lays the foundation for the development of underwater acoustic optical fiber monitoring system of prestressed concrete structure.
关键词
断丝监测 /
声发射 /
分布式光纤 /
水声探测
{{custom_keyword}} /
Key words
wire breakage monitoring /
acoustic emission /
distributed optic fiber /
underwater acoustic detection
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Ge, S., and Sinha, S. Failure Analysis, Condition Assessment Technologies, and Performance Prediction of Prestressed- Concrete Cylinder Pipe: State-of-the-Art Literature Review [J]. Journal of Performance of Constructed Facilities, ASCE, 28(3), 618-628. 2014.
[2] 张春娟,郑新让,张迪.冯家山水库引水工程爆管事故分析[J].中国农村水利水电,2005(05):81-82.
Zhang C, Zheng X and Zhang D. Pipe Burst Accident Analysis of the Water Diversion Works from Feng Jiashan Reservior [J]. China Rural Water and Hydropower, 2005(05):81-82. (in Chinese)
[3] 邓扬,丁幼亮,李爱群.基于小波包分析的拉索损伤声发射信号特征提取[J].振动与冲击, 2010,29(06):154-158+242.
Deng Y., Ding Y., and Li A., Feature extraction of acoustic emission signals for cable damage based on wavelet packet analysi [J]. Journal of Vibration and Shock. 2010,29(06): 154-158+242.(in Chinese)
[4] 李冬生,胡倩,李惠, 等.多龄期桥梁斜拉索疲劳损伤演化声发射监测技术研究[J].振动与冲击, 2012,31(4):67-71.
Li D., Hu Q., and Li H., et al. Acoustic emission technique for momitoring stay cable fatigue damage evolution of multi-aged bridge[J]. Journal of Vibration and Shock. 2012,31(4):67-71.(in Chinese)
[5] 钱骥,孙利民,蒋永.高强钢丝断裂声发射试验研究[J].振动与冲击,2014,33(04):54-59.
Qian J, Sun L and Jiang Y. Acoustic emission tests for high-strength wire breakage [J]. Journal of Vibration and Shock. 2014,33(04):54-59. (in Chinese)
[6] Huang J., Zhou Z, and Zhang D, et al. Online monitoring of wire breaks in prestressed concrete cylinder pipe utilising fibre Bragg grating sensors [J]. Measurement. 79(2016):112-118.
[7] 张丽娜, 任亚玲, 林融冰,等.分布式光纤声波传感器及其在天然地震学研究中的应用 [J].地球物理学进展,35(1) : 0065-0071.
Zhang L,. Ren Y,. and Lin R,. et al.Distributed acoustic sensing system and its application for seismological studies[J].Progress in Geophysics (in Chinese), 35(1): 0065-0071.
[8] Fan,X., Liu, Q., and Du, J., et al. Prototype development of phase-sensitive coherent optical time domain reflectometry for distributed vibration measurement [C]. 2014 Asia Communications and Photonics Conference (ACP) IEEE, 2019.
[9] 孙廷玺,徐龙海,王升,等.基于偏振分集技术的分布式光纤声波传感系统[J].光通信技术,2020,44(08):5-9.
Sun T., Xu L., and Wang S., et al. Distributed optical fiber acoustic sensing system based on polarization diversity technology[J]. Optical Communication Technology. 2020, 44(08):5-9. (in Chinese)
[10] 沈功田. 声发射检测技术及应用 [M]. 北京:科学出版社. 2015.
Shen G., Acoustic Emission Technology and Application [M]. Beijing: Science Press. 2015. (in Chinese)
[11] Ma G., Du Q., Structural health evaluation of the prestressed concrete using advanced acoustic emission (AE) parameters [J]. Construction and Building Materials. 250(2020)118860.
[12] 徐平, 郝旺身. 振动信号处理与数据分析[M]. 北京:科学出版社. 2016.
Xu P., and Hao W. Vibration signal processing and data analysis [M]. Beijing: Science Press. 2015. (in Chinese)
[13] 商峰, 刘毅, 杨波, 等. 预应力钢筒混凝土管腐蚀断丝信号特征的实验研究[J]. 土木工程学报(审稿中)
Shang F., Liu Y, and Yang B., et al. Experimental Study on the Acoustic Characteristics of Wire Corrosion Fracture in Prestressed Concrete Cylinder Pipe [J]. China Civil Engineering Journal. (Submited)
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}