考虑液体晃荡的部分充液圆柱壳受迫振动分析

韩越洋1,3,朱翔1,2,3,李天匀1,2,3,张帅1,3

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 37-45.

PDF(2316 KB)
PDF(2316 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 37-45.
论文

考虑液体晃荡的部分充液圆柱壳受迫振动分析

  • 韩越洋1,3,朱翔1,2,3,李天匀1,2,3,张帅1,3
作者信息 +

Forced vibration analysis of partially filled cylindrical shell considering liquid sloshing

  • HAN Yueyang1,2, ZHU Xiang1,2,3, LI Tianyun1,2,3, ZHANG Shuai1,2
Author information +
文章历史 +

摘要

充液圆柱壳结构广泛存在于在工程中,在外部激励作用下,圆柱壳会与流体产生耦合振动,且未充满的液面也会产生晃荡,这种耦合振动响应分析在工程中具有重要意义。本文提出了一种求解考虑内部液体小幅晃荡的弹性圆柱壳振动响应的半解析法。首先分别在壳体建立结构坐标系、在自由液面建立液体坐标系,各自用来描述结构及内部液体的运动。基于Flügge壳体理论建立了圆柱壳的运动控制方程。将液体视为为无粘、不可压缩的理想流体,根据线性水波理论和液体自由表面运动边界条件,得出了内部液体的速度势函数。通过流固耦合界面的连续性条件,结合坐标变换推导得到流固耦合系统的运动控制方程。研究了壳体在径向点力激励下振动响应,并得出了对应的液面晃荡响应。和有限元法对比验证了方法的正确性,然后改变相关参数讨论了考虑内部液体晃荡的弹性圆柱壳振动响应特性。

Abstract

The liquid-filled cylindrical shell structure widely exists in practical engineering. Under the action of external excitation, the cylindrical shell and the fluid will generate coupled vibration, and the unfilled liquid surface will also slosh. This coupled vibration response analysis is of great significance in engineering. This paper presents a semi-analytical method for solving an elastic cylindrical shell's vibration response considering internal liquid sloshing. Firstly, a shell-based structure coordinate system and a free liquid surface-based liquid coordinate system are established to describe the internal liquid's structure and movement, respectively. Based on the Flügge shell theory, the motion control equation of the cylindrical shell is established. Considering the liquid as an inviscid and incompressible ideal fluid, the velocity potential function of the internal liquid is obtained according to the linear water wave theory and the boundary conditions of the liquid free surface motion. The motion governing equations of the fluid-structure interaction interface is obtained through the continuity condition of the fluid-structure interaction system and the coordinate transformation. The vibration response of the shell under radial harmonic excitation is studied, and the corresponding liquid surface sloshing response is obtained. By changing the system parameters, the vibration response characteristics of the elastic cylindrical shell considering the internal liquid sloshing are discussed.

关键词

弹性圆柱壳 / 部分充液 / 液面线性晃荡 / 流固耦合 / 受迫振动 / 响应特性

Key words

elastic cylindrical shell / partially filled with liquid / linear sloshing of liquid surface / fluid-structure interaction / forced vibration / response characteristics

引用本文

导出引用
韩越洋1,3,朱翔1,2,3,李天匀1,2,3,张帅1,3. 考虑液体晃荡的部分充液圆柱壳受迫振动分析[J]. 振动与冲击, 2024, 43(3): 37-45
HAN Yueyang1,2, ZHU Xiang1,2,3, LI Tianyun1,2,3, ZHANG Shuai1,2. Forced vibration analysis of partially filled cylindrical shell considering liquid sloshing[J]. Journal of Vibration and Shock, 2024, 43(3): 37-45

参考文献

[1] 杨鹏飞, 陈刚, 薛杰等. 航天器弹性充液贮箱双向流固耦合响应特性数值分析[J]. 振动与冲击, 2021, 40(12): 7. Yang Pengfei, Chen Gang, Xue Jiem, et al. Numerical simulations on response characteristics of a spacecraft elastic liquid--filled tank by a fluid-structure coupling method[J]. Journal of Vibration and Shock, 2021, 40(12):7. [2] 李青, 韩增尧, 马兴瑞. 航天器贮箱液固耦合振动特性的仿真与试验研究[J]. 宇航学报, 2014, 35(11): 1233–1237. Li Qing, Han Zengyao, Ma Xingrui. Simulation and Experimental Research on Fluid-Structure-Interaction Dynamics of Tank in Spacecrafts[J]. Journal of Astronautics, 2014, 35(11):1233-1237 [3] 王世彦, 俞孟萨. 舷间液舱模型声振耦合特性及声辐射控制[J]. 船舶力学, 2019, 23(1): 14. Wang Shiyan, Yu Mengsa. Sound and vibration coupling characteristic and acoustic radiation control of water cabin[J]. Journal of Ship Mechanics, 2019, 23(1):14. [4] 金超超, 朱翔, 李天匀等. 含环向表面裂纹充液圆柱壳的耦合振动特性分析[J]. 振动与冲击, 2018, 037(023): 71–77. Jin Chaochao, Zhu Xiang, Li Tianyun, et al. Coupled vibration feature analysis for a fluid-filled cylindrical shell with a circumferential surface crack[J]. Journal of Vibration and Shock, 2018, 37(23):71-77. [5] Flügge, Wilhelm. Stresses in shells[M]. Stresses in shells, 1960. [6] Zhang X M, Liu G R, Lam K Y. Vibration analysis of thin cylindrical shells using wave propagation approach[J]. Journal of Sound & Vibration, 2001, 239(3): 397–403. [7] 骆东平. 任意边界条件下圆柱壳体振动特性分析[J]. 固体力学学报, 1990(1): 86–96. Luo Dongping. Vibration Characteristics of Cylindrical Shells With Arbitrary Boundary Conditions[J]. Acta Mechanica Solida Sinica, 1990(1): 86-96. [8] Christoforou A P, Swanson S R. Analysis of Simply-Supported Orthotropic Cylindrical Shells Subject to Lateral Impact Loads[J]. Journal of Applied Mechanics, 1990, 57(2): 376–382. [9] 庞福振, 彭德炜, 李海超等. 圆柱壳结构受迫振动特性分析[J]. 振动与冲击, 2019, 38(16): 7. Pang Fuzhen, Peng Dewei, Li Haichao, et al. Forced vibration characteristics analysis of a cylindrical shell structure[J]. Journal of Vibration and Shock, 2019, 38(16):7. [10] 王宇, 罗忠. 薄壁圆柱壳构件受迫振动的响应特征研究[J]. 振动与冲击, 2015, 34(7): 6. Wang Yu, Luo Zhong. Forced vibration response characteristics of thin cylindrical shell[J]. Journal of Vibration and Shock, 2015, 34(7):6 [11] Amabili M. FREE VIBRATION OF PARTIALLY FILLED, HORIZONTAL CYLINDRICAL SHELLS[J]. Journal of Sound & Vibration, 1996, 191(5): 757–780. [12] Shigeru Y. Fluid-structure coupling by the entrained fluid in submerged concentric double-shell vibration[J]. Journal of the Acoustical Society of Japan, 2011, 14(2): 99–111. [13] Fuller C R. The input mobility of an infinite circular cylindrical elastic shell filled with fluid[J]. Journal of Sound & Vibration, 1983, 87(3): 409–427. [14] 李天匀, 王露, 郭文杰等. 有限长半充液圆柱壳振动特性分析[J]. 中国舰船研究, 2016, 11(2): 5. Li Tianyun,Wang Lu,Guo Wenjie, et al. Vibration characteristics analysis of finite cylindrical shells semi-filled with liquid[J]. Chinese Journal of Ship Research, 2016, 11(2):106-110. [15] 徐慕冰. 圆柱壳-流场耦合系统的振动波传播与能量流研究[D]. 华中理工大学 华中科技大学, 1999. [16] Han Y, Zhu X, Guo W, et al. Coupled vibration analysis of partially liquid-filled cylindrical shell considering free surface sloshing[J]. Thin-Walled Structures, Elsevier Ltd., 2022, 179(June): 109555. [17] Mciver, P. Sloshing frequencies for cylindrical and spherical containers filled to an arbitrary depth[J]. Journal of Fluid Mechanics, 1989, 201(1): 243–257. [18] Evans D V., Linton C M. Sloshing frequencies[J]. Quarterly Journal of Mechanics and Applied Mathematics, 1993, 46(1): 71–87. [19] Xu L. Fluid dynamics in horizontal cylindrical containers and liquid cargo vehicle dynamics.[D]. The University of Regina (Canada)., 2006. [20] Hasheminejad S M, Soleimani H. An analytical solution for free liquid sloshing in a finite-length horizontal cylindrical container filled to an arbitrary depth[J]. Applied Mathematical Modelling, Elsevier Inc., 2017, 48: 338–352. [21] Han Y, Zhu X, Li T, et al. A semi-analytical study of the three-dimensional liquid sloshing in a horizontal cylindrical tank with an arbitrary liquid depth[J]. Ocean Engineering, Elsevier Ltd, 2021, 238(March): 109722. [22] Soedel W. Vibrations of shells and plates[M]. Vibrations of shells and plates, 1981. [27] M. Amabili, Free vibration of partially filled, horizontal cylindrical shells[J]. Journal of Sound and Vibration. 191 (1996) 757–780. [28] A.A. Lakis, G. Bursuc, M.H. Toorani, Sloshing effect on the dynamic behavior of horizontal cylindrical shells[J]. Nuclear Enginerring and Design. 239 (2009) 1193–1206.

PDF(2316 KB)

445

Accesses

0

Citation

Detail

段落导航
相关文章

/