BTA深孔加工镗杆的横向随机振动

赵武1,张全斌1,李亚敏1,2,荆双喜1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 46-57.

PDF(3374 KB)
PDF(3374 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 46-57.
论文

BTA深孔加工镗杆的横向随机振动

  • 赵武1,张全斌1,李亚敏1,2,荆双喜1
作者信息 +

Lateral random vibration of boring bar for BTA deep-hole process

  • ZHAO Wu1, ZHANG Quanbin1, LI Yamin1,2, JING Shuangxi1
Author information +
文章历史 +

摘要

研究采用随机方法分析了蕴含轴向流动流体的BTA深孔镗杆在随机力下的横向随机动力行为。建模时考察了流固耦合镗杆承受的弯曲、拉伸和扭转变形;经Galerkin method离散化处理,分析了BTA镗杆在有、无随机激励两种情况的特征值和特征频率对振动特性的影响;利用响应方差最大值和谱密度解析了BTA镗杆横向振动的临界转速与临界失稳频率;明确了镗杆随转速、刚度、初始轴向总力和剪切模量等参数变化对系统振动特性的影响机制:镗杆转速变化对系统稳定性不再具有单调性,随BTA镗杆转速持续增加,系统可历经两次转速的临界失稳,相继出现二次失稳和二次稳定;增加系统等效刚度和等效剪切模量会促进工作过程的稳定,改变轴向力对工作过程稳定的影响不明显;并以随机振动物理实验信号的功率谱分析,验证了理论仿真结果与实验结果的一致性。本项研究在一定程度上揭示了BTA深孔工艺系统运动状态的复杂性,这种研究模式为进一步分析在复杂状态下的运动演化提供了更多的可能。研究结论为更好地理解BTA深孔镗杆工作时的随机动力行为提供了依据,也为BTA深孔工艺过程的振动控制和参数优化奠定了理论基础。

Abstract

The lateral random dynamic behavior of BTA deep-hole boring bar with axial flow fluid under stochastic excitation is studied by using stochastic method. The bending, stretching and torsional deformation of the boring bar under fluid-structure coupling were considered in the modeling, and the Galerkin method was used to discretization the model. The effects of characteristic values and frequency on vibration characteristics of BTA boring bar with and without stochastic excitation are analyzed. The critical speed and critical instability frequency of the lateral vibration of the deep-hole boring bar were analyzed by using the maximum value of the response variance and spectral density. The influence of parameters such as rotational speed, stiffness, initial total axial force and shear modulus on the vibration characteristics of the system is clarified. The effect of the speed change of boring bar on the stability of the system is no longer monotonous, with the increase of the BTA boring bar speed, the system will undergo two critical instabilities of rotational speed, namely the systematic motion modes transfer in the order of instability, stability, instability and stability; Increasing the equivalent stiffness and equivalent shear modulus of the system will promote the stability of the working process; The effect of changing the axial force on the stability of the working process is not obvious; The agreement between the analysis results and the experimental results is verified by the power spectrum of stochastic vibration physical experiments. This study reveals the complexity of the motion state of BTA deep hole process system to a certain extent, and this research mode provides more possibilities for further analysis of the motion evolution in the complex state. The research conclusion provides a basis for better understanding the random dynamic behavior of BTA deep-hole boring bar when it works, and also provides a theoretical basis for vibration control and parameter optimization of BTA deep-hole process.

关键词

BTA深孔镗杆 / 横向振动 / 随机振动特性 / 特征值 / 响应方差 / 谱密度

Key words

BTA deep-hole boring bar / Lateral vibration / Stochastic vibration characteristics / Characteristic value / Response variance / Spectral density

引用本文

导出引用
赵武1,张全斌1,李亚敏1,2,荆双喜1. BTA深孔加工镗杆的横向随机振动[J]. 振动与冲击, 2024, 43(3): 46-57
ZHAO Wu1, ZHANG Quanbin1, LI Yamin1,2, JING Shuangxi1. Lateral random vibration of boring bar for BTA deep-hole process[J]. Journal of Vibration and Shock, 2024, 43(3): 46-57

参考文献

[1] Chandar J B, Nagarajan L, Kumar M S. Recent research progress in deep hole drilling process: a review[J]. Surface Review and Letters, 2021, 28(11): 2130003. [2] 中国机械工程学会. 中国机械工程技术路线图 2021版[M]. 北京: 机械工业出版社, 2021. [3] 赵武,霍博义,黄丹. BTA深孔精密扩孔系统流体扰动的非线性横振[J]. 机械工程学报,2020, 56(17): 155-164. ZHAO Wu, HUO Boyi, HUANG Dan. Nonlinear Transverse Vibration Induced by Fluid Disturbance on BTA Deep Hole Precision Reaming System[J]. Journal of Mechanical Engineering, 2020, 56(17): 155-164. [4] Al-Wedyan H M, Hayajneh M T. Dynamic modelling and analysis of whirling motion in BTA deep hole boring process[J]. International Journal of Machining and Machinability of Materials, 2011, 10(1-2): 48-70. [5] Ma Guohong, Shen Xingquan. Eigensolution of a BTA deep-hole drilling shaft system[J]. Journal of Mechanical Science and Technology, 2018, 32(4): 1499-1504. [6] Weinert K, Webber O, Peters C. On the influence of drilling depth dependent modal damping on chatter vibration in BTA deep hole drilling[J]. CIRP annals, 2005, 54(1): 363-366. [7] Chin J H, Hsieh C T, Lee L W. The shaft behavior of BTA deep hole drilling tool. International Journal of Mechanical Sciences, 1996, 38(5):461-482. [8] Perng Y L, Chin J H. Theoretical and experimental investigationon the spinning BTA deep-hole drill shafts containing fluids and subject to axial forces. International Journal of Mechanical Sciences,1999,41:1301-1322. [9] Deng C S, Chin J H. Roundness Errors in BTA Drilling and a Model of Waviness and Lobing Caused by Resonant Forced Vibrations of Its Long Drill Shaft[J]. American Society of Mechanical Engineers, 2004(3). [10] Kenichiro, Matsuzaki, Takahiro, et al. Theoretical and experimental study on rifling markgenerating phenomena in BTA deep hole drilling process[J]. Advances in Mechanical Engineering, 2015, 88:196-205. [11] Raabe N, Enk D, Biermann D, et al. Dynamic Disturbances in BTA Deep-Hole Drilling: Modelling Chatter and Spiralling as Regenerative Effects. Studies in Classification, Data Analysis, and Knowledge Organization, 2009:745–754. [12] Raabe N, Webber O, Theis W, et al. Spiralling in BTA deep-hole drilling: models of varying frequencies[M]. From Data and Information Analysis to Knowledge Engineering. Springer, Berlin, Heidelberg, 2006: 510-517. [13] Messaoud A, Weihs C. Monitoring a deep hole drilling process by nonlinear time series modeling[J]. Journal of Sound and Vibration, 2009, 321(3-5): 620-630. [14] Steininger A, Bleicher F. In-process monitoring and analysis of dynamic disturbances in boring and trepanning association (BTA) deep drilling[J]. Journal of Machine Engineering, 2018, 18(4): 47-59. [15] 胡占齐,赵武,缪磊. BTA深孔加工中流体力引起的钻杆涡动的研究[J]. 机械工程学报,2005(01):230-233. HU Zhanqi, ZHAO Wu, MIAO Lei. Research on vortex motion ofbta drilling shaft caused byhydro-force[J]. Journal of Mechanical Engineering, 2005(01):230-233. [16] 赵武,霍博义,黄丹,等. 切削液扰动对BTA深孔加工系统横向振动频率的影响[J].振动与冲击,2020, 39(11): 184-192. ZHAO Wu, HUO Boyi, HUANG Dan, et al. Effect of the perturbation in cutting fluid on the transverse vibration frequency in BTA deep-hole boring bar system[J]. Journal of vibration and shock, 2020, 39(11): 184-192. [17] Zhao W, Zhang Quanbin, Jia Weitao, et al. Influence on BTA Boring Bar Transverse Vibration Considering Inner Cutting Fluid Velocity and Axial Force[J]. Advanced Materials Research, 2014, 887-888:1215-1218. [18] Zhao Wu, Chen Dejie, Hu Zhanqi. Center track analysis and simulation considering effect of vortex and perturbation of cutting fluid on BTA boring bar[J].Applied Mechanics & Materials, 2014, 526: 150-154. [19] 薛继仁,陈立群,张业伟,等. 单自由度NES在高斯白噪声随机激励下的响应分析[J]. 振动与冲击,2020, 39(12): 235-241. XUE Jiren, CHEN Liqun, ZHANG Yewei, et al. Response analysis of single degree of freedom NES under random excitation of gaussian white oise[J]. Journal of vibration and shock, 2020, 39(12): 235-241. [20] 游震洲,黄其祥,王锋,等. 转子-基础系统的随机不确定建模与振动分析[J]. 航空动力学报,2016, 31(01): 1-9. YOU Zhenzhou, HUANG Qixiang, WANG Feng, et al. Random uncertainty modeling and vibration analysis of rotor-foundation system[J]. Journal of Aerospace Power, 2016, 31(01): 1-9. [21] Hosseini S A A, Khadem S E. Vibration and reliability of a rotating beam with random properties under random excitation[J]. International Journal of Mechanical Sciences, 2007, 49(12): 1377-1388. [22] 唐帆,王锡平,朱文海,等.多源随机激励系统的参数灵敏度分析[J]. 振动与冲击,2012, 31(01): 82-85. TANG Fan, WANG Xiping, ZHU Wenhai, et al. Parameter sensitivity analysis for a system with multi-source random excitation[J]. Journal of vibration and shock, 2012, 31(01): 82-85. [23] 张毅成,黄港婷,谢石林. 多维相关随机激励下梁结构响应求解方法[J]. 应用力学学报,2021, 38(02): 566-573. ZHANG Yicheng, HUANG Gangting, XIE Shi-lin. Solution of beam response spectrum under multi-dimensional correlated random excitation[J]. Chinese Journal of Applied Mechanics, 2021, 38(02): 566-573. [24] Wang Ziqi, Song Junho. Equivalent linearization method using Gaussian mixture (GM-ELM) for nonlinear random vibration analysis[J]. Structural safety, 2017, 64: 9-19. [25] 胡宏祥,陈林聪. 随机激励下非线性能量阱系统减振性能优化研究[J]. 振动与冲击,2022, 41(24): 27-32+59. HU Hongxiang, CHEN Lincong. Optimization of damping performance of a nonlinear energy sinksystem under random excitation[J]. Journal of vibration and shock, 2022, 41(24): 27-32+59. [26] Liu F, Zhao Y. A hybrid method for analysing stationary random vibration of structures with uncertain parameters[J]. Mechanical Systems and Signal Processing, 2022, 164: 108259. [27] Qian J, Chen L. Optimization for vibro-impact nonlinear energy sink under random excitation[J]. Theoretical and Applied Mechanics Letters, 2022, 12(5): 100364. [28] Irani S, Sazesh S. A new flutter speed analysis method using stochastic approach[J]. Journal of Fluids and Structures, 2013, 40(7):105-114. [29] Kreyszig E. Advanced Egineering Mathematics, 10th Edition [M]. John Wiley & Sons, 2011:708-735. [30] 赵建. 液固耦联BTA深孔加工系统横向非线性耦合振动研究[D]. 河南理工大学, 2020. [31] 中国第一重型机械集团公司. 重型机械工艺手册(上)[M]. 哈尔滨: 哈尔滨出版社, 1998. [32] Deng, C. S, Huang, J C, Chin, J. H. Effects of Support Misalignments in Deep-Hole Drill Shafts on Hole Straightness[J]. International Journal of Machine Tools & Manufacture., 2001, 41:1165–1188.

PDF(3374 KB)

Accesses

Citation

Detail

段落导航
相关文章

/