本文首先基于分离变量算法(separation of variables,MSV)求解了单节流孔静压气体轴承的层流边界层方程,研究了节流孔附近流场特性,阐明了节流孔出口附近压降现象是由于惯性效应导致的原因,并研究了轴承几何参数和供气参数对压降现象的影响规律。最终提出了压降现象产生的临界条件为压比为0.9409,也即压比大于临界压比时,压降现象消失。其次基于质量流量相等原则,结合层流边界层的MSV方法及雷诺方程的解析算法,提出了一种计算节流孔系数的新方法,并研究了轴承的几何参数及供气参数对节流孔系数的影响规律。结果显示,节流孔系数存在着参数敏感和不敏感区域,这是由于当压比小于等于0.6左右时,节流孔系数趋近于一个常数0.86左右导致的。
Abstract
In this paper, the method of “separation of variables” (MSV) is utilized to solve laminar boundary-layer equations of aerostatic thrust bearing with single orifice and study the performances of the flow field behind orifice. Then the pressure depression phenomenon is caused by the inertial effect and the influences of the aerostatic bearing geometry and flow parameters on the pressure depression are studied. Moreover, the critical condition of the pressure phenomenon generation is the critical pressure ratio 0.9409, i.e. that is, when the pressure ratio is greater than the critical pressure ratio, the pressure depression phenomenon disappears. Moreover, based on the principle of the equal mass flow rate, a new numerical method which combines the MSV for solution of laminar boundary-layer equations and analytical solution of Reynolds equation is proposed to study the discharge coefficient. The influences of flow and geometry parameters on discharge coefficients are investigated. The results show that there exists parameters insensitive and sensitive regions in discharge coefficient analysis, which is caused by that discharge coefficient tends to be constant 0.86 when pressure ratio is approximately less than 0.6.
关键词
静压气体止推轴承 /
压降现象 /
节流孔系数 /
分离变量算法 /
雷诺方程
{{custom_keyword}} /
Key words
Aerostatic thrust bearing /
Pressure depression /
Discharge coefficient /
MSV /
Reynolds equation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHANG J, HAN D, SONG M, et al. Theoretical and experimental investigation on the effect of supply pressure on the nonlinear behaviors of the aerostatic bearing-rotor system [J]. Mechanical Systems and Signal Processing, 2021, 158: 107775.
[2] ZHANG J, HAN D, XIE Z, et al. Nonlinear behaviors analysis of high-speed rotor system supported by aerostatic bearings [J]. Tribology International, 2021: 107111.
[3] HAN D, BI C, YANG J. Nonlinear dynamic behavior research on high-speed turbo-expander refrigerator rotor [J]. Engineering Failure Analysis, 2018, 96: 484-95.
[4] 刘兴富. 高精度卫星气浮仿真转台微小干扰力矩分析与实验研究 [D]; 哈尔滨工业大学, 2015.
[5] 陈军平. 高刚度超精密气体静压导轨副关键技术研究 [D]; 中原工学院, 2016.
[6] WANG X, XU Q, WANG B, et al. Effect of surface waviness on the static performance of aerostatic journal bearings [J]. Tribology International, 2016, 103: 394-405.
[7] BELFORTE G, RAPARELLI T, VIKTOROV V, et al. Discharge coefficients of orifice-type restrictor for aerostatic bearings [J]. Tribology International, 2007, 40(3): 512-21.
[8] MORI H. A Theoretical Investigation of Pressure Depression in Externally Pressurized Gas-Lubricated Circular Thrust Bearings [J]. Journal of Basic Engineering, 1961, 83(2): 201-8.
[9] MORI H, MIYAMATSU Y. Theoretical Flow-Models for Externally Pressurized Gas Bearings [J]. Journal of Lubrication Technology, 1969, 91(1): 181-93.
[10] 陈昌婷. 高速气体轴承结构性能分析与实验研究 [D]; 中国科学院研究生院(工程热物理研究所), 2014.
[11] YOSHIMOTO S, SUGANUMA N, YAGI K, et al. Numerical Calculations of Pressure Distribution in the Bearing Clearance of Circular Aerostatic Thrust Bearings With a Single Air Supply Inlet [J]. Journal of Tribology, 2007, 129(2): 384-90.
[12] ELESHAKY M E. CFD investigation of pressure depressions in aerostatic circular thrust bearings [J]. Tribology International, 2009, 42(7): 1108-17.
[13] GUPTA R, KAPUR V. Inertial effects on pressure depressions in gas-lubricated thrust bearings [J]. Wear, 1982, 77(2): 203-16.
[14] 王波, 吴言功, 薛家岱, et al. 静压轴承节流孔出口斜坡对压力陡降现象的抑制 [J]. 机床与液压, 2017, 45(13): 121-4+30.
WANG B, WU Y, XUE J, et al. Suppression Effect of Slope under the Orifice on Drastic Pressure Depression Phenomenon of Aerostatic Bearing [J]. MACHINE TOOL & HYDRAULICS, 2017, 45(13): 121-4+30.
[15] 温众普, 吴剑威, 范芯蕊, et al. 微结构参数对静压气体导轨节流系数和转动刚度的影响 [J]. 机械工程学报, 2021, 57(3): 11.
WEN P, WU J, FAN X, et al. Influences of Microstructure Parameters on the Throttling Coefficient and Rotational Stiffness of Aerostatic Guideway [J]. Journal of Mechanical Engineering, 2021, 57(3): 11.
[16] MIYATAKE M, YOSHIMOTO S. Numerical investigation of static and dynamic characteristics of aerostatic thrust bearings with small feed holes [J]. Tribology International, 2010, 43(8): 1353-9.
[17] NISHIO U, SOMAYA K, YOSHIMOTO S. Numerical calculation and experimental verification of static and dynamic characteristics of aerostatic thrust bearings with small feedholes [J]. Tribology International, 2011, 44(12): 1790-5.
[18] CHANG S, CHAN C, JENG Y. Numerical analysis of discharge coefficients in aerostatic bearings with orifice-type restrictors [J]. Tribology International, 2015, 90: 157-63.
[19] CHANG S, CHAN C, JENG Y. Discharge coefficients in aerostatic bearings with inherent orifice-type restrictors [J]. Journal of Tribology, 2015, 137(1): 011705.
[20] POWELL J, 丁维刚. 空气静压轴承设计 [Z]. 北京: 国防工业出版社. 1978
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}