低频非线性浮筏隔振装置设计及特性研究

李步云1, 2,帅长庚1, 2,马建国1, 2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 86-92.

PDF(1996 KB)
PDF(1996 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (3) : 86-92.
论文

低频非线性浮筏隔振装置设计及特性研究

  • 李步云1, 2,帅长庚1, 2,马建国1, 2
作者信息 +

Design and characteristics of low-frequency nonlinear floating raft vibration isolation device

  • LI Buyun1,2, SHUAI Changgeng1,2, MA Jianguo1,2
Author information +
文章历史 +

摘要

低频振动噪声影响水下装备声隐身性能。在原气囊隔振装置基础上,通过结构改进设计,使得侧向气囊能够为系统提供负刚度,通过与垂向气囊并联,设计了一种新型非线性浮筏隔振装置,提升了隔振装置的低频隔振能力。新型隔振装置由“侧向气囊-万向节-垂向气囊”非线性隔振器组和浮筏组成。分析了侧向气囊为系统提供负刚度原理,建立了非线性浮筏隔振装置六自由度动力学模型,设计了新型隔振装置样机并开展了相关性能试验。理论分析和试验结果表明,新型非线性浮筏隔振系统垂向一阶固有频率约为原系统的50%,垂向隔振性能提升了约6dB,侧向隔振性能与原系统相当。此外,也研究了非线性浮筏隔振系统的摇摆稳定性。研究结果表明,在重载情况下,新系统能够具备较好的摇摆稳定性。

Abstract

Low-frequency vibration affects the acoustic stealth performance of underwater equipment. A novel nonlinear floating raft vibration isolation system is proposed based on air spring. The structure design makes the lateral air spring provide negative stiffness to the system and improve the low-frequency vibration isolation performance. The new system consists of "lateral air spring-universal joint-vertical air spring" nonlinear vibration isolator group and floating raft. The mechanism of the negative stiffness generated is analyzed, the six-degrees-of-freedom dynamic model of the nonlinear floating raft vibration isolation system is established, the prototype of the new system is designed, and the related performance tests are carried out. Theoretical analysis and experimental results show that the vertical first order natural frequency of the new system is approximately reduced to 50% of that of the original system, and the vertical vibration isolation performance is improved by about 6dB, and the lateral vibration isolation performance is similar to that of the original system. In addition, the rolling stability of nonlinear floating raft vibration isolation system is also studied. The results show that the new system can have good rolling stability under heavy load.

关键词

浮筏隔振系统 / 气囊隔振装置 / 非线性隔振 / 负刚度 / 摇摆稳定性

Key words

floating raft vibration isolation system / air spring vibration isolation system / nonlinear vibration isolation / negative stiffness / rolling stability

引用本文

导出引用
李步云1, 2,帅长庚1, 2,马建国1, 2. 低频非线性浮筏隔振装置设计及特性研究[J]. 振动与冲击, 2024, 43(3): 86-92
LI Buyun1,2, SHUAI Changgeng1,2, MA Jianguo1,2. Design and characteristics of low-frequency nonlinear floating raft vibration isolation device[J]. Journal of Vibration and Shock, 2024, 43(3): 86-92

参考文献

[1] 何琳,徐伟. 舰船隔振装置技术及其进展[J]. 声学学报, 2013, 38(2): 128-136. HE Lin,Xu Wei. Naval vessel machinery mounting technology and its recent advances[J]. Acta Acustica, 2013, 38(2): 128-136. [2] 何琳, 帅长庚. 振动理论与工程应用[M]. 北京:科学出版社, 2015. HE Lin, SHUAI Changgeng. Vibration theory and engineering application [M]. Beijing: The Science Publishing Company, 2015. [3] CARRELLA A, BRENNAN M J, WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301(3): 678-689. [4] CARRELLA A, BRENNAN M J, WATERS T P, et al. On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets[J]. Journal of Sound and Vibration, 2008, 315: 712-720. [5] CARRELLA A, BRENNAN M J, WATERS T P. Optimization of a quasi-zero-stiffness isolator[J]. Journal of Mechanical Science and Technology, 2007, 21(6):946-949. [6] 刘兴天,黄修长,张志谊,等. 激励幅值及载荷对准零刚度隔振器特性的影响[J]. 机械工程学报,2013,49(6): 89-94. LIU Xingtian,HUANG Xiuchang,ZHANG Zhiyi,et al. Influence of exctitation amplitude and load on the characterisitcs of quasi-zero stiffness isolator[J]. Journal of Mechnical Engineering, 2013, 49(6): 89-94. [7] YAO Y, WANG X, LI H. Design and analysis of a high-static-low-dynamic stiffness isolator using the cam-roller-spring mechanism[J]. Journal of Vibration and Acoustics-Transactions of the ASME, 2020, 142: 021009. [8] SUN X,JING X,XU J,et al. Vibration isolation via a scissor-like structured platform[J]. Journal of Sound and Vibration,2014,333(9): 2404-2420. [9] SUN X,JING X. A nonlinear vibration isolator achieving high-static-low-dynamic stiffness and tunable anti-resonance frequency band[J]. Mechanical Systems and Signal Processing,2016,80:166-188. [10] YAN G, ZOU H, WANG S, et al. Large stroke quasi-zero stiffness vibration isolator using three-link mechanism[J]. Journal of Sound and Vibration, 2020, 478: 115344. [11] 严博,马洪业,韩瑞祥,等. 可用于大幅值激励的永磁式非线性隔振器[J].机械工程学报,2019,55(11):169-175. YAN Bo,Ma Hongye,Han Ruixiang,et al. Permanent magnets based nonlinear vibration isolator subjected to large amplitude acceleration excitations [J]. Journal of Mechnical Engineering,2019,55(11): 169-175. [12] VO N, NGUYEN M, LE T. Analytical study of a pneumatic vibration isolation platform featuring adjustable stiffness[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 98: 105775. [13] WU, Z, JING, X, SUN, B, et al. A 6DOF passive vibration isolator using X-shape supporting structures[J]. Journal of Sound and Vibration, 2016, 380: 90-111. [14] ZHOU J, XIAO Q, XU D, et al. A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform[J]. Journal of Sound and Vibration, 2017, 394: 59–74. [15] ZHOU J, WANG K, XU, D, et al. A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts[J]. Journal of Vibration and Acoustics-Transactions of the ASME, 2017, 139: 034502. [16] 张振海, 朱石坚, 楼京俊,等. 基于跟踪混沌化方法的线谱控制技术研究[J]. 振动与冲击, 2010, 30(7): 50-52. ZHANG Z H,ZHU S J,LOU J J. Line spectra reduction of a vibration isolation system based on tracking chaotification method [J]. Journal of Vibration and Shock, 2010, 30(7): 50-52. [17] 张振海, 朱石坚, 楼京俊. 基于离散混沌化方法的线谱控制技术研究[J]. 振动与冲击, 2010(10): 57-59+133+256-257. ZHANG Z H,ZHU S J,LOU J J. A new method of discrete chaotification for line spectra reduction of a vibration isolation system[J]. Journal of Vibration and Shock, 2010(10): 57-59+133+256-257. [18] ZHANG J,XU D,ZHOU J,et al. Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control[J]. Chaos Solitons and Fractals, 2012, 45(9-10): 1255-1265. [19] LI Y, XU D. Vibration attenuation of high dimensional quasi-zero stiffness floating raft system[J]. International Journal of Mechanical Sciences, 2017, 126: 186-195. [20] LI Y, XU D. Force transmissibility of floating raft systems with quasi-zero-stiffness isolators[J]. Journal of Vibration and Control, 2017, 24(16): 3608-3616. [21] 何琳, 赵应龙, 帅长庚,等. 智能气囊隔振装置[P].中国,CN101813152B, 2012. HE Lin, ZHAO Yinglong, SHUAI Changeng, et al. Intelligent air spring vibration isolation system[P]. China, CN101813152B, 2012. [22] 卜文俊, 施亮, 何琳, 徐伟. 双层气囊隔振装置多目标协同姿态控制方法[J].国防科技大学学报, 2019, 41(06): 70-74. BU Wenjun, SHI Liang, HE Lin, XU Wei. Multi-objective coordinated attitude control method for dual layer air spring vibration isolation mounting[J]. Journal of National University of Defense Technology, 2019, 41(06): 70-74. [23] ZHANG Y, XU W, LI Z, et al. Design and dynamic analysis of low-frequency mounting system for marine thrust bearing[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43: 109. [24] SHUAI C, LI B, MA J. A novel multi-directional vibration isolation system with high-static-low-dynamic stiffness [J]. Acta Mechanica, 2022, 233: 5199–5214. [25] KOVACIC I, BRENNAN M J, WATERS T P. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic[J]. Journal of Sound and Vibration, 2008, 315(3):700-711. [26] HE L, XU W, BU W, et al. Dynamic analysis and design of air spring mounting system for marine propulsion system[J]. Journal of Sound and Vibration, 2014, 333(20): 4912-4929.

PDF(1996 KB)

Accesses

Citation

Detail

段落导航
相关文章

/