星型-三角形负泊松比结构的面内压缩刚度可调控特性

魏路路1,2,许世维1,朱国华2,赵轩2

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 105-114.

PDF(3214 KB)
PDF(3214 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 105-114.
论文

星型-三角形负泊松比结构的面内压缩刚度可调控特性

  • 魏路路1,2,许世维1,朱国华2,赵轩2
作者信息 +

In-plane compression tunable stiffness characteristics of star-triangular honeycomb with negative Poisson’s ratio

  • WEI Lulu1,2,XU Shiwei1,ZHU Guohua2,ZHAO Xuan2
Author information +
文章历史 +

摘要

通过准静态面内压缩试验揭示星型-三角形结构(star-triangular honeycomb,STH)的刚度可调控特性。利用有限元模拟的方法研究非均匀壁厚STH的面内压缩刚度可调控机制,分析不同类型胞壁厚度比(("t" _"1" "=" "t" _"3" ))⁄"t" _"2" 及胞壁角对其面内压缩刚度的影响。结果表明:STH在面内压缩载荷下呈两个线弹性阶段,且强化刚度比初始刚度显著增大。适当地增大内凹胞壁和垂直胞壁的厚度可同时提高STH的初始刚度及强化刚度;当(("t" _"1" "=" "t" _"3" ))⁄"t" _"2" >"1.575" 后,初始刚度仍持续增大,而强化刚度反而逐渐减小,最终不再具有强化刚度阶段。胞壁角"α"≤"40°" 时,增大胞壁角可提高STH的初始刚度及强化刚度,反之,初始刚度及强化刚度对应的应变随胞壁角的增大逐渐增大,而强化刚度逐渐减小并趋于消失。该研究将为可调节刚度负泊松比结构的设计提供新的思路。

Abstract

Quasi-static in-plane compression tests were used to reveal the tunable stiffness characteristics of star-triangular honeycomb (STH). The tunable mechanism of compression stiffness for STH with non-homogeneous cell-wall thickness was investigated via finite element simulation, and the influences of different cell-wall thickness ratios (("t" _"1" "=" "t" _"3" ))⁄"t" _"2" and cell-wall angles on the in-plane compression stiffness were analyzed. The results show that the stress-strain curve of STH shows two linear elastic stages under in-plane compression loading, and the strengthening stiffness is significantly higher than the initial stiffness. Appropriately increasing the thickness of re-entrant and vertical cell-walls can significantly improve the initial stiffness and strengthening stiffness of STH. When (("t" _"1" "=" "t" _"3" ))⁄"t" _"2" >"1.575" , the initial stiffness continues to increase while the strengthening stiffness gradually decreases, and finally the strengthening stiffness phase disappears. When "α"≤"40°" , increasing the cell-wall angle can improve the initial stiffness and strengthening stiffness of STH. On the contrary, the initial stiffness and strain corresponding to strengthening stiffness gradually increased with the increase of cell-wall angle, while strengthening stiffness gradually decreased and tended to disappear. This study is expected to provide a novel path for design of auxetic honeycombs with tunable stiffness.

关键词

星型-三角形结构 / 负泊松比 / 可调控刚度 / 非均匀壁厚 / 准静态压缩

Key words

star-triangular honeycomb (STH) / negative Poisson’s ratio / tunable stiffness / non-homogeneous cell-wall thickness / quasi-static compression

引用本文

导出引用
魏路路1,2,许世维1,朱国华2,赵轩2. 星型-三角形负泊松比结构的面内压缩刚度可调控特性[J]. 振动与冲击, 2024, 43(4): 105-114
WEI Lulu1,2,XU Shiwei1,ZHU Guohua2,ZHAO Xuan2. In-plane compression tunable stiffness characteristics of star-triangular honeycomb with negative Poisson’s ratio[J]. Journal of Vibration and Shock, 2024, 43(4): 105-114

参考文献

[1] Coenen V L, Alderson K L. Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates[J]. physica status solidi (b), 2011, 248(1): 66-72. [2] Choi J B, Lakes R S. Non-linear properties of metallic cellular materials with a negative Poisson's ratio[J]. Journal of Materials Science, 1992, 27(19): 5375-5381. [3] Scarpa F, Ciffo L G, Yates J R. Dynamic properties of high structural integrity auxetic open cell foam[J]. Smart Materials and Structures, 2003, 13(1): 49-56 [4] Scarpa F. Damping in auxetic materials and structures[J]. The Journal of the Acoustical Society of America, 2010, 127(3): 1888. [5] Lee W, Jeong Y, Yoo J, et al. Effect of auxetic structures on crash behavior of cylindrical tube[J]. Composite Structures, 2019, 208: 836-846. [6] Janus-Michalska M, Jasinska D, Smardzewski J. Comparison of Contact Stress Distribution for Foam Seat and Seat of Auxetic Spring Skeleton[J]. International Journal of Applied Mechanics & Engineering, 2013, 18(1):55-72. [7] 王源隆. 负泊松比结构汽车悬架缓冲块的力学性能研究与优化设计[D].南京:南京理工大学,2016. WANG Longyuan. Mechanics research and optimal design of a vehicle suspension jounce bumper with Negative Poisson's Ratio structure [D]. Nanjing: Nanjing University of Science&Technology, 2016(in Chinese). [8] Theocaris P S, Stavroulakis G E, Panagiotopoulos P D. Negative Poisson's ratios in composites with star-shaped inclusions: a numerical homogenization approach[J]. Archive of Applied Mechanics, 1997, 67(4): 274-286. [9] Quan C, Han B, Hou Z, et al. 3d printed continuous fiber reinforced composite auxetic honeycomb structures[J]. Composites Part B Engineering, 2020, 187:107858. [10] Dong Z, Li Y, Zhao T, et al. Experimental and numerical studies on the compressive mechanical properties of the metallic auxetic reentrant honeycomb[J]. Materials & Design, 2019, 182: 108036. [11] Lu Z, Wang Q, Li X, et al. Elastic properties of two novel auxetic 3D cellular structures[J]. International Journal of Solids and Structures, 2017: 46-56. [12] Fu M H, Chen Y, Hu L L. A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength[J]. Composite Structures, 2017, 160(JAN.):574-585. [13] Lu H, Wang X, Chen T. In-plane dynamics crushing of a combined auxetic honeycomb with negative Poisson's ratio and enhanced energy absorption[J]. Thin-Walled Structures, 2021, 160: 107366. [14] Liu J Y, Liu H T, An M R. Crushing behaviors of novel Diabolo shaped honeycombs with enhanced energy absorption performance[J]. International Journal of Mechanical Sciences, 2022, 229: 107492. [15] Lu H, Wang X, Chen T. Enhanced stiffness characteristic and anisotropic quasi-static compression properties of a negative Poisson’s ratio mechanical metamaterial[J]. Thin-Walled Structures, 2022, 179: 109757. [16] 卢子兴,王欢,杨振宇,李响.星型-箭头蜂窝结构的面内动态压溃行为[J].复合材料学报,2019,36(08):1893-1900. LU Zixing, WANG Huan, YANG Zhenyu, et al. In-plane dynamic crushing of star-arrowhead honeycomb structure[J]. Acta Materiae Compositae Sinica, 2019, 36(8): 1893-1900(in Chinese). [17] 马芳武, 梁鸿宇, 赵颖,等. 内凹三角形负泊松比材料的面内冲击动力学性能[J]. 振动与冲击, 2019, 38(17):81-87. MA Fangwu, LIANG Hongyu, ZHAO Ying, et al. In-plane impact dynamic performance of concave triangle material with negative Poisson’s ratio. Journal of Vibration and Shock, 2019, 38(17): 81-87(in Chinese). [18] 马芳武,梁鸿宇,赵颖,杨猛,蒲永锋.内凹三角形负泊松比结构耐撞性多目标优化设计[J].吉林大学学报(工学版),2020,50(01):29-35. MA Fang-wu, LIANG Hong-yu, ZHAO Ying, et al. Multi-objective crashwor thiness optimization design of concave triangles cell structure with negative Poisson's ratio[J].Journal of Jilin University(Engineering and Technology Edition), 2020, 50(1): 29-35(in Chinese). [19] Hur J M, Seo D S, Kim K, et al. Harnessing distinct deformation modes of auxetic patterns for stiffness design of tubular structures[J]. Materials & Design, 2021, 198: 109376. [20] Cheng X, Zhang Y, Ren X, et al. Design and mechanical characteristics of auxetic metamaterial with tunable stiffness[J]. International Journal of Mechanical Sciences, 2022, 223: 107286. [21] Zhang Y, Sun L, Ren X, et al. Design and analysis of an auxetic metamaterial with tuneable stiffness[J]. Composite Structures, 2022, 281: 114997. [22] McCrary A, Hashemi M S, Sheidaei A. Programmable Bidirectional Mechanical Metamaterial with Tunable Stiffness and Frictional Energy Dissipation[J]. Advanced Theory and Simulations, 2022: 2200135. [23] Zhang X Y, Ren X, Wang X Y, et al. A novel combined auxetic tubular structure with enhanced tunable stiffness[J]. Composites Part B: Engineering, 2021, 226: 109303. [24] 孙龙,任鑫,张毅,等.一种刚度可调控的负泊松比管状结构[J].复合材料学报,2022,39(04):1813-1823. SUN Long, REN Xin, ZHANG Yi, et al. An auxetic tubular structure with tuneable stiffness[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1813-1823(in Chinese). [25] Wei L, Zhao X, Yu Q, et al. A novel star auxetic honeycomb with enhanced in-plane crushing strength[J]. Thin-Walled Structures, 2020, 149: 106623. [26] Wei L, Zhao X, Yu Q, et al. Quasi-static axial compressive properties and energy absorption of star-triangular auxetic honeycomb[J]. Composite Structures, 2021, 267: 113850. [27] Zhang J, Lu G, Wang Z, et al. Large deformation of an auxetic structure in tension: Experiments and finite element analysis[J]. Composite Structures, 2018, 184: 92-101. [28] 魏路路, 余强, 赵轩, 等. 内凹-反手性蜂窝结构的面内动态压溃性能研究[J]. 振动与冲击, 2021, 40(4): 261-269. WEI Lulu, YU Qiang, ZHAO Xuan, et al. In-plane dynamic crushing characteristics of re-entrant anti-trichiral honeycomb. Journal of Vibration and Shock, 2021, 40(4): 261-269(in Chinese).

PDF(3214 KB)

467

Accesses

0

Citation

Detail

段落导航
相关文章

/