二维层状盆地地震动附加放大特征研究:SV波入射

于彦彦,丁海平,芮志良

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 166-178.

PDF(5460 KB)
PDF(5460 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 166-178.
论文

二维层状盆地地震动附加放大特征研究:SV波入射

  • 于彦彦,丁海平,芮志良
作者信息 +

Additional aggravation features of seismic motion atop of 2D sedimentary basin:SV wave incidence case

  • YU Yanyan,DING Haiping,RUI Zhiliang
Author information +
文章历史 +

摘要

首先发展了一种基于谱元法和多次透射边界的平面SV波入射下二维复杂场地波动数值模拟方法。基于该方法,模拟分析了31条地震波输入下二维典型层状沉积盆地中的各场点相比其对应的一维土层模型的模拟地震动的附加放大特征,分析了放大系数对于输入地震波的敏感性。结果表明,本文方法具有较高精度和良好的高频稳定性。不同地震波输入下,盆地地面运动及其放大特征存在较大差别。水平分量上平均反应谱放大系数的较大值(最大1.2左右)集中在盆地边缘区域及周期等于0.5~0.7倍自振周期附近,垂直分量上较大放大系数(最大0.9左右)紧邻盆地角点且周期为0.3倍自振周期处。同时,盆地对不同周期地震动的放大特征,以及不同位置点的谱放大系数随周期的变化规律均表现出明显不同,相对短周期地震动的盆地边缘效应最为强烈,而相对长周期地震动的放大作用明显减弱。此外,盆地边缘区域的放大系数对输入波最为敏感,不同地震波输入下放大系数值在较大范围内变化;而盆地中间区域的放大系数对输入波不敏感,其值的变化范围相对较小。

Abstract

A numerical method combined the spectral element method and multi-transmitting formula for simulating wave motions of 2D complex site under plane SV wave incidence. Based on this method, and considering 31 distinctive input waves, the additional aggravation features of 2D layered trapezoidal basin relative to the local 1D model, as well as the sensitivity with input waves are investigated. The results show that the proposed method has high accuracy and good stability performance in high frequency. The basin surface motion and aggravation features varies significantly with input signals. For horizontal component, the large-value average aggravation factor of response spectral (AFRS, with maximum value of 1.2) are concentrated in the basin edge region and at periods around 0.5~0.7 times the resonance frequency of the deepest part. While for the vertical component, large AFRS (maximum value of 0.9) regions are close to the basin corner and at 0.3 times resonance frequency. In addition, there exits considerable difference for aggravation features of basin in different periods, and for the changing trend of AFRS with frequencies. The basin edge effect is strongest for short-period motions, where the AFRS is most sensitive to incident motions, with its value varies in a large range. However, the aggravations decrease significantly for long-period waves, and the AFRS in the central part of the basin is quite insensitive to input waves, with a value changed in an obvious smaller range.

关键词

谱元法 / 多次透射边界 / 层状盆地 / 地震动 / 附加放大特征

Key words

spectral element method / multi-transmitting formula / layered basin / seismic motion / additional aggravation feature

引用本文

导出引用
于彦彦,丁海平,芮志良. 二维层状盆地地震动附加放大特征研究:SV波入射[J]. 振动与冲击, 2024, 43(4): 166-178
YU Yanyan,DING Haiping,RUI Zhiliang. Additional aggravation features of seismic motion atop of 2D sedimentary basin:SV wave incidence case[J]. Journal of Vibration and Shock, 2024, 43(4): 166-178

参考文献

[1] Anderson J G, Bodin P, Brune J N, et al. Strong Ground Motion from the Michoacan, Mexico, Earthquake[J]. Science, 1986, 233(4768): 1043‒1049. [2] 梁建文, 魏新磊, Lee V W. 圆弧形沉积谷地对平面SV波三维散射解析解[J], 岩土工程学报, 2009, 31(9): 1345- 1353. LIANG Jianwen, WEI Xinlei, Lee V W. 3D scattering of plane SV waves by a circular-arc alluvial valley[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1345- 1353. [3] 刘启方,于彦彦,章旭斌. 施甸盆地三维地震动研究[J]. 地震工程与工程振动,2013, 33(4): 54-60. LIU Qifang, YU Yanyan, ZHANG Xubin. Three-dimensional ground motion simulation for Shidian Basin[J]. Journal of Earthquake Engineering and Engineering Virbration, 2013, 33(4): 54-60. [4] 付长华, 高孟潭, 俞言祥. 用数值模拟方法研究北京盆地对3-10s地震动的放大效应[J]. 地震研究, 2015, 38(3):448-460. FU Changhua, GAO Mengtan, YU Yanxiang. Studying on Amplification Effect of Beijing Basin on 3~10 s Ground Motion by Numerical Simulation Method[J]. Journal of Seismological Research, 2015, 38(3):448-460. [5] Wen K L, Peng H Y. Site Effects Analysis in the Taipei Basin: Results from TSMIP Network Data[J]. TAO, 1998, 9(4): 691-704. [6] Yu Y, Ding H, Liu Q. Three-dimensional simulations of strong ground motion in the Sichuan basin during the Wenchuan earthquake[J]. Bulletin of Earthquake Engineering, 2017, 15(11): 4661-4679. [7] 韩天成,于彦彦,丁海平.直下型断层的破裂速度对盆地地震效应的影响[J].地震学报, 2020, 42(04): 457- 470+510. HAN Tiancheng, YU Yanyan, DING Haiping. Influence of rupture velocity of the directly-beneath fault on the basin seismic effect[J]. ACTA SEISMOLOGICA SINICA, 2020, 42(04): 457- 470+510. [8] 游昊冉,杨笑梅.SV垂直入射时LowerHutt沉积盆地竖向地震动分析[J].地震工程与工程振动,2019,39(05):199-207. YOU Haoran, YANG Xiaomei. Vertical ground motion analysis of LowerHutt sedimentary basin of SV vertical incidence[J]. Earthquake Engineering and Engineering Dynamics, 2019,39(05):199-207. [9] Kawase H. The Cause of the Damage Belt in Kobe: ‘The Basin-edge Effect,’ Constructive Interference of the Direct S-Wave with the Basin-Induced Diffracted/Rayleigh Waves[J]. Seismological Research Letters,1996, 67(5): 25‒34. [10] Kinoshita S, Fujiwara H, Mikoshiba T, et al. Secondary Love waves observed by a strong motion array in the Tokyo Lowlands, Japan[J]. J. Phys. Earth, 1992, 40:99–116. [11] Bard P Y, Bouchon M. The two-dimensional resonance of sediment-filled valleys[J]. Bull. Seism. Soc. Am., 1985, 75(2): 519-541. [12] Shani-Kadmiel S, Tsesarsky M, Louie J N, et al. Geometrical focusing as a mechanism for significant amplification of ground motion in sedimentary basins: analytical and numerical study[J]. Bulletin of earthquake engineering, 2014, 12(2): 607-625. [13] 金丹丹,陈国兴.福州盆地地震效应特征的一、二维模型对比研究[J].土木工程学报,2012,45(S1):48-53. JIN Dandan, CHEN Guoxing. Large-scale two-dimensional nonlinear FE analysis vs one-dimensional quivalent lineariza- tion analysis on seismic effect of Fuzhou Basin[J]. China Civil Engineering Journal, 2012,45(S1):48-53. [14] Day S M, Graves R, Bielak J, et al. Model for basin effects on long-period response spectra in southern California[J]. Earthquake Spectra, 2008, 24(1): 257-277. [15] Zhu C, Chávez-García F J, Thambiratnam D, et al. Quantifying the edge-induced seismic aggravation in shallow basins relative to the 1D SH modelling[J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 402-412. [16] Zhu C, Riga E, Pitilakis K, et al. Seismic Aggravation in shallow basins in addition to one-dimensional site amplify- cation[J]. Journal of Earthquake Engineering, 2020, 24(9): 1477-1499. [17] Riga E, Makra K, Pitilakis K. Aggravation factors for seismic response of sedimentary basins: A code- oriented parametric study[J]. Soil Dynamics and Earthquake Engineering, 2016, 91: 116-132. [18] Riga E, Makra K, Pitilakis K. Investigation of the effects of sediments inhomogeneity and nonlinearity on aggravation factors for sedimentary basins[J]. Soil Dynamics and Earthquake Engineering, 2018, 110: 284- 299. [19] GB50011-2010,《建筑抗震设计规范》[S]. 北京:中国建筑工业出版社,2016. GB50011-2010. Code of Seismic Design of Building[S]. Beijing: China Architecture & Building Press, 2016. [20] Tiwari R C, Bhandary N P. 3D SEM-based seismic ground response analysis of Kathmandu Valley in 2015 Gorkha Nepal earthquake[J]. Journal of Seismology, 2021: 1-18. [21] 戴志军,李小军,侯春林.谱元法与透射边界的配合使用及其稳定性研究[J].工程力学,2015,32(11):40-50. DAI Zhijun, LI Xiaojun, HOU Chunlin. A combination usage of transmitting formula and spectral element method and the study of its stability[J]. Engineering Mechanics, 2015,32(11): 40-50. [22] 邢浩洁,李鸿晶.透射边界条件在波动谱元模拟中的实现:二维波动[J].力学学报,2017,49(04):894-906. XING Haojie, LI Hongjing. Implementation of Multi- transmitting boundary condition for wave motion simulation by spectral element method: 2-D case[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(4):894-906. [23] 于彦彦, 丁海平, 刘启方. 透射边界与谱元法的结合及对波动模拟精度的改进[J]. 振动与冲击, 2017, 36(2):13-22. YU Yanyan, DING Haiping, LIU Qifang. Integration of transmitting boundary with spectral-element method and improvement to accuracy of wave motion simulation[J]. Journal of Vibration and Shock, 2017, 36(2):13-22. [24] Yu Y, Ding H, Zhang X. Simulations of ground motions under plane wave incidence in 2D complex site based on the spectral element method (SEM) and multi-transmitting formula (MTF): SH problem[J]. Journal of Seismology, 2021, 25(3): 967-985. [25] 宋志强,刘琳,王飞等. 近断层 P 波斜入射下沥青混凝土心墙坝响应分析[J].振动与冲击,2023,42(7): 245-253. SONG Zhiqiang, LIU Lin, WANG Fei, et al. Response analysis of asphalt concrete core dam under oblique incidence of near-fault P-wave [J]. Journal of Vibration and Shock, 2023,42(7): 245-253. [26] 赵密,贾智富,昝子卉等.不同场地条件下地连墙对地铁车站结构地震动力响应的影响[J].地震工程学报, 2023,45(2): 270-278+295. ZHAO Mi, JIA Zhifu, ZAN Zihui, et al. Influence of the diaphragm wall on the dynamic responses of subway station structures under different site conditions[J]. China Earthquake Engineering Journal, 2023,45(2): 270-278+295. [27] 丁海平,朱重洋,于彦彦. P,SV波斜入射下凹陷地形地震动分布特征[J]. 振动与冲击,2017,36(12):88-92+98. DING Haiping, ZHU Chongyang, YU Yanyan. Characteristic of ground motions of a canyon topography under inclined P and SV waves[J]. Journal of Vibration and Shock, 2017,36(12): 88-92+98. [28] 魏成前,于彦彦,丁海平.SV波斜入射下成层盆地地震动时-频域放大特征研究[J].地震工程与工程振动,2022,42(2): 225-234. WEI Chengqian, YU Yanyan, DING Haiping. Study on amplification characteristics of ground motion in layered basin in time and frequency domain under oblique incidence of SV wave[J]. Earthquake Engineering and Engineering Dynamics, 2022,42(2):225-234. [29] 桂永庆,袁宝远,邹凯等.基于FLAC-3D黄土边坡地震作用下动力响应数值分析[J].中国煤炭地质,2016,28(10):63-66+ 80. GUI Yongqing, YUAN Baoyuan, ZOU Kai, et al. Loess Slope Dynamic Response Numerical Analysis under Earthquake Vibration Based on FLAC-3D[J]. Coal Geology of China, 2016,28(10):63-66+80. [30] 赵磊超,宋志强,王飞,等. 基于 IBIEM的河谷场地非一致地震动特性及影响因素分析[J].振动与冲击,2022,41(23): 109-119. ZHAO Leichao, SONG Zhiqiang, WANG Fei, et al. Non-uniform ground motion characteristics and influencing factors of valley site under oblique incidence of SH wave[J]. Journal of Vibration and Shock, 2022,41(23): 109-119. [31] 刘中宪,王建旭,金立国等.Rayleigh波入射下建筑群-隧道群相互作用特性研究[J].防灾减灾工程学报,2022,42(6): 1153-1164. LIU Zhongxian, WANG Jianxu, JIN Liguo, et al. Dynamic response analysis of gravity dam under oblique incidence of seismic wave[J]. Journal of Disaster Prevention and Mitigation Engineering, 2022,42(6): 1153-1164. [32] Vasilev G, Parvanova S, Dineva P, et al. Soil-structure interaction using BEM–FEM coupling through ANSYS software package[J]. Soil Dynamics and Earthquake Engineering, 2015, 70: 104-117. [33] 邹德高,刘京茂,孔宪京等.强震作用下特高土石坝多耦合体系损伤演化机理及安全评价准则[J].岩土工程学报,2022,44(7):1329-1340. ZOU Degao, LIU Jingmao, KONG Xianjing, et al. Damage evolution mechanism and safety evaluation criterion of ultra-high rockfill dam system under strong earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2022,44(7): 1329-1340. [34] Schuberth B. The Spectral Element Method for Seismic Wave Propagation[D]. Department Für, Geo-Und Umweltwissens- chaften, Sektion Ge-ophysik. 2003, pp.23-25. [35] 廖振鹏.工程波动理论导论[M]. 北京:科学出版社, 2002. LIAO Zhenpeng. Introduction to wave motion theories for engineering[M]. Beijing: Science Press, 2002. [36] Komatitsch D, Tromp J. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophysical journal international, 1999, 139(3): 806-822. [37] Wong H L. Effect of surface topography on the diffraction of P, SV, and Rayleigh waves[J]. Bulletin of the Seismological Society of America, 1982, 72(4): 1167-1183. [38] 巴振宁,梁建文.平面SV波在层状半空间中沉积谷地周围的散射[J].地震工程与工程振动,2011,31(03): 18-26. BA Zhenning, LIANG Jianwen. Diffraction of plane SV waves around an alluvial valley in layered halfspace[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(3): 18-26. [39] Asimaki D, Mohammadi K, Ayoubi P, et al. Investigating the spatial variability of ground motions during the 2017 Mw 7.1 Puebla-Mexico City earthquake via idealized simulations of basin effects[J]. Soil Dynamics and Earthquake Engineering, 2020, 132: 106073. [40] Dobry R, Oweis I, Urzua A. Simplified procedures for estimating the fundamental period of a soil profile[J]. Bulletin of the Seismological Society of America, 1976, 66(4): 1293-1321. [41] 熊建国,许贻燕. 分层土自振特性分析[J]. 地震工程与工程振动,1986, 6(4): 21-35. XIONG Jianguo, XU Yiyan. Analysis of the behavior of natural vibration of layered soil deposits[J]. Earthquake Engineering and Engineering Vibration, 1986, 6(4): 21-35. [42] 李瑞山,袁晓铭.成层场地基本周期简化计算方法研究[J].岩土力学,2019,40(8):3227-3235. LI Ruishan, YUAN Xiaoming. Simplified calculation method for the fundamental period of layered soil sites[J]. Rock and Soil Mechanics, 2019,40(8):3227-3235. [43] Bard P Y and Bouchon M. The Seismic Response of Sediment-filled Valleys. Part 2. The Case of Incident P and SV Waves[J]. Bull. Seism. Soc. Am., 1980, 70(5):1921‒1941. [44] Liu Q F, Yu Y Y, Zhang X B. Three-dimensional simulations of strong ground motion in the Shidian basin based upon the spectral-element method[J]. Earthquake Engineering and Engineering Vibration, 2015, 14(3): 385-398. [45] Kawase H, Aki K. A study on the response of a soft basin for incident S, P, and Rayleigh waves with special reference to the long duration observed in Mexico City[J]. Bull. Seism. Soc. Am., 1989, 79(5): 1361-1382.

PDF(5460 KB)

461

Accesses

0

Citation

Detail

段落导航
相关文章

/