融合多工况功率谱密度函数的工作模态分析方法

曾舒洪,康杰,孙嘉宝,罗杰

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 179-189.

PDF(3762 KB)
PDF(3762 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 179-189.
论文

融合多工况功率谱密度函数的工作模态分析方法

  • 曾舒洪,康杰,孙嘉宝,罗杰
作者信息 +

An operational modal analysis method fusing multi-condition power spectral density function

  • ZENG Shuhong,KANG Jie,SUN Jiabao,LUO Jie
Author information +
文章历史 +

摘要

频域分解(Frequency Domain Decomposition,FDD)方法是开展环境激励下结构工作模态分析(Operational Modal Analysis,OMA)的常用方法。但是,现有的FDD方法存在一些不足:(1)无法剔除非白激励及谐波激励引起的虚假模态;(2)无法区分结构密集模态与不相关非白激励产生的虚假模态。通过研究发现功率谱密度(Power Spectral Density,PSD)矩阵的秩是FDD方法性能的决定性因素。在此基础上,提出一种新的工作模态识别OMA方法,该方法结合了不同激励工况下的响应PSD函数矩阵,并分别对单个激励工况下的响应PSD矩阵与多工况下的增广响应PSD矩阵进行奇异值分解,通过对比单工况PSD矩阵与增广PSD矩阵在奇异值峰值处秩的变化,识别出包括密集模态在内的结构模态参数,并消除由非白激励产生的虚假模态。采用桁架结构仿真算例和广州塔的工程数据集验证所提方法的有效性。

Abstract

The frequency domain decomposition (FDD) method is a common method for structural operational modal analysis ( OMA ) under ambient excitation. However, the existing FDD methods have some shortcomings : (1) spurious modes caused by non-white excitation and harmonic excitation cannot be eliminated ; (2) It is impossible to distinguish between structurally closely-spaced modes and spurious modes generated by uncorrelated non-white excitations. It is found that the rank of power spectral density ( PSD ) matrix is the decisive factor for the performance of FDD method. On this basis, a new OMA method is proposed. This method combines the response PSD function matrix under different excitation conditions, and performs singular value decomposition on the response PSD matrix under a single excitation condition and the augmented response PSD matrix under multiple excitation conditions. By comparing the rank changes of the single-case PSD matrix and the augmented PSD matrix at the peak of the singular value, the structural modal parameters including the closely-spaced mode are identified, and the spurious mode generated by the non-white excitation is eliminated. The effectiveness of the proposed method is verified by a truss structure simulation example and the engineering data set of Guangzhou Tower.

关键词

工作模态分析 / 非白噪声激励 / 密集模态 / 功率谱密度

Key words

Operational modal analysis / Non-white excitation / Closely-spaced modes / Power spectral density

引用本文

导出引用
曾舒洪,康杰,孙嘉宝,罗杰. 融合多工况功率谱密度函数的工作模态分析方法[J]. 振动与冲击, 2024, 43(4): 179-189
ZENG Shuhong,KANG Jie,SUN Jiabao,LUO Jie. An operational modal analysis method fusing multi-condition power spectral density function[J]. Journal of Vibration and Shock, 2024, 43(4): 179-189

参考文献

[1] REYNDERS E,HOUBRECHTS J,ROECK G D. Fully automated (operational) modal analysis[J]. Mechanical Systems and Signal Processing, 2012, 29: 228–250. [2] 董霄峰 ,练继建 ,杨敏 ,等.谐波干扰下海上风机结构工作模态识别 [J]. 振动与冲击, 2015, 34(10): 152-156. Dong Xiaofeng, Lian Jijian, Yang Min, et al. Modal identification of offshore wind turbine structures under harmonic interference [ J ]. Vibration and shock, 2015,34 ( 10 ) : 152-156. [3] 秦仙蓉, 余传强, 孙远韬, 等. 基于监测数据的岸桥模态参数识别 [J]. 振动与冲击, 2019, 38(20): 216-221. Qin Xianrong, Yu Chuanqiang, Sun Yuantao, et al. Modal parameter identification of quay crane based on monitoring data [ J ]. Vibration and shock, 2019, 38 ( 20 ) : 216-221. [4] 宋明亮, 苏亮, 董石麟, 等. 模态参数自动识别的虚假模态剔除方法综述 [J]. 振动与冲击, 2017, 36(13): 1-10. Song Mingliang, Su Liang, Dong Shilin, et al. Review of false modal elimination methods for automatic identification of modal parameters [ J ]. Vibration and shock, 2017, 36 ( 13 ) : 1-10. [5] BRINCKER R, ZHANG L, ANDERSEN P. Modal Identification from Ambient Responses using Frequency Domain Decomposition[C]// Proceedings of the International Modal Analysis Conference, San Antonio, USA, 2000:625-630. [6] 李青,王天舒, 等. 充液航天器液体晃动和液固耦合动力学的研究与应用 [J]. 力学进展, 2012, 42(4):472-481. Li Qing, Wang Tianshu et al. Research and application of liquid sloshing and liquid-solid coupling dynamics of liquid-filled spacecraft [ J ].Mechanical progress, 2012, 42 ( 4 ) : 472-481. [7] Jacob E, Flandro G. Thrust oscillations in large solid rocket boosters[C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. 2008: 4601. [8] Hirsch H G, Pearce D. The Aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions[C]//ASR2000-Automatic speech recognition: challenges for the new Millenium ISCA tutorial and research workshop (ITRW). 2000. [9] ZHANG Z, HUA H, XU X, et al. Modal parameter identification through Gabor expansion of response signals [J]. Journal of Sound and Vibration, 2003, 266(5): 943-955. [10] BRINCKER R, ANDERSEN P, MøLLER N. An indicator for separation of structural and harmonic modes in output-only modal testing[C]// proceedings of the Proceedings of the European COST F3 Conference on System Identification & Structural Health Monitoring, Universidad Politécnica de Madrid, Spain, F, 2000. Universidad Politécnica de Madrid, 2000:265-272. [11] GUILLAUME P, DEVRIENDT C, DE SITTER G. Identification of modal parameters from transmissibility measurements[C]// proceedings of the Finds and Results from the Swedish Cyprus Expedition: A Gender Perspective at the Medelhavsmuseet, F, 2005. [12] YAN W-J, REN W-X. Operational Modal Parameter Identification from Power Spectrum Density Transmissibility [J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(3): 202-217. [13] YAN W-J, REN W-X. An Enhanced Power Spectral Density Transmissibility (EPSDT) approach for operational modal analysis: theoretical and experimental investigation [J]. Engineering Structures, 2015, 102: 108-119. [14] ARAúJO I G, LAIER J E. Operational modal analysis approach based on multivariable transmissibility with different transferring outputs [J]. Journal of Sound and Vibration, 2015, 351: 90-105. [15] 杭晓晨, 蒋令闻, 顾明华,等. 频域分解模态识别方法的阻尼识别精度研究 [J]. 振动工程学报, 2015, 28(4): 519-525. Hang Xiaochen, Jiang Lingwen, Gu Minghua, et al.Research on damping identification accuracy of frequency domain decomposition modal identification method [ J ].Journal of Vibration Engineering, 2015,28 ( 4 ) : 519-525. [16] 王彤, 张令弥. 运行模态分析的频域空间域分解法及其应用 [J]. 航空学报, 2006, 027(001): 62-66. Wang Tong, Zhang Lingmi. Frequency domain Spatial domain Decomposition Method for Operational Modal Analysis and its application [J]. Acta Aeronautica et Astronautica Sinica, 2006, 027(001): 62-66. [17] KANG J. Operational modal analysis method by combining power spectral density transmissibility functions under different load cases [J]. Mechanical Systems and Signal Processing, 2022, 180: 109433. [18] BRANDT A. A signal processing framework for operational modal analysis in time and frequency domain [J]. Mechanical Systems & Signal Processing, 2019, 115(JAN.15): 380-393. [19] KANG J, JU H, LIU L. Comparison of response transmissibility and power spectral density transmissibility on operational modal analysis [J]. Mechanical Systems and Signal Processing, 2021, 160: 107912. [20] YAN W-J, ZHAO M-Y, SUN Q, et al. Transmissibility-based system identification for structural health Monitoring: Fundamentals, approaches, and applications [J]. Mechanical Systems and Signal Processing, 2019, 117: 453-482. [21] QIN S, KANG J, WANG Q. Operational Modal Analysis Based on Subspace Algorithm with an Improved Stabilization Diagram Method [J]. Shock and Vibration,2016,(2016-1-5), 2016, 2016(pt.2): 1-10. [22] TAO J, MU Y, JIA H, et al. A Novel Dominant Mode Estimation Method for Analyzing Inter-Area Oscillation in China Southern Power Grid [J]. IEEE Transactions on Smart Grid, 2016, 7(5): 2549-2560. [23] ZHAO X, YE B. Selection of effective singular values using difference spectrum and its application to fault diagnosis of headstock [J]. Mechanical Systems & Signal Processing, 2011, 25(5): 1617-1631. [24] ARAúJO I G, SáNCHEZ J A G, ANDERSEN P. Modal parameter identification based on combining transmissibility functions and blind source separation techniques [J]. Mechanical Systems and Signal Processing, 2018, 105: 276-293. [25] CHEN W, LU Z, LIN W, et al. Theoretical and experimental modal analysis of the Guangzhou New TV Tower [J]. Engineering Structures, 2011, 33(12): 3628-3646. [26] NI Y Q, XIA Y, LIAO W Y, et al. Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower [J]. Structural Control and Health Monitoring, 2009, 16(1): 73-98. [27] GUO Y L, KAREEM A, NI Y Q, et al. Performance evaluation of Canton Tower under winds based on full-scale data [J]. Journal of WindEngineering and Industrial Aerodynamics, 2012, 104-106: 116-128. [28] NI Y Q, WONG K Y, XIA Y. Health checks through landmark bridges to sky-high structures [J]. Advances in Structural Engineering, 2011, 14(1): 103-119. [29] WANG, YOU-WU, NI, et al. Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method [J]. Smart structures and systems, 2016. [30] NI Y, XIA Y, LIN W, et al. SHM benchmark for high-rise structures: a reduced-order finite element model and field measurement data [J]. Smart Structures and Systems, 2012, 10(4_5): 411-426. [31] CHEN W H, LU Z R, LIN W, et al. Theoretical and experimental modal analysis of the Guangzhou New TV Tower [J]. Engineering Structures, 2011, 33(12): 3628-3646. [32] NI Y, XIA Y, LIN W, et al. SHM benchmark for high-rise structures: a reduced-order finite element model and field measurement data [J]. Smart Structures and Systems, 2012, 10(4-5): 411-426. [33] ZHANG F-L, NI Y-Q, NI Y-C, et al. Operational modal analysis of Canton Tower by a fast frequency domain Bayesian method [J]. Smart Structures and Systems, 2016, 17(2): 209-230.

PDF(3762 KB)

296

Accesses

0

Citation

Detail

段落导航
相关文章

/