基于能量转化原理的地铁板式轨道自密实混凝土本构行为

陈俊豪,曾晓辉,谢友均,龙广成,唐卓

振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 190-198.

PDF(3281 KB)
PDF(3281 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (4) : 190-198.
论文

基于能量转化原理的地铁板式轨道自密实混凝土本构行为

  • 陈俊豪,曾晓辉,谢友均,龙广成,唐卓
作者信息 +

Constitutive response of subway slab track self-compacting concrete based on theenergy conversion principle

  • CHEN Junhao,ZENG Xiaohui,XIE Youjun,LONG Guangcheng,TANG Zhuo
Author information +
文章历史 +

摘要

为了掌握地铁板式轨道充填层自密实混凝土(SCC)在车辆荷载作用下的本构行为,通过对SCC进行单轴抗压试验,研究了不同应变率、橡胶掺量和尺寸对力学性能和能量演化规律的影响,建立了SCC的本构模型。结果表明:峰值应力的应变率敏感系数绝对值最大,弹性模量次之,峰值应变最小;橡胶延缓了能量的早期增长,而在峰值应力之后,橡胶则阻碍了弹性应变能的耗散,延长了总应变能和耗散能的快速增长;应变率越大,总应变能和耗散能增长越快,弹性应变能在峰值应力前的积累速率越快,峰值应力后的释放速率越快;建立的本构模型可以用于描述SCC在不同应变率条件下的应力-应变关系。

Abstract

In order to better understand the constitutive response of self-compacting concrete (SCC) applied in subway slab track filling layer under vehicle loads, the uniaxial compression test of SCC was carried out. The effects of different strain rates, rubber content and size on the stress-strain relationship and the energy evolution law of SCC were investigated, and a constitutive model was established. The results showed that the absolute value of the strain rate sensitivity coefficient of the peak stress was the largest, followed by the elastic modulus, and the peak compressive strain was the smallest. Because of rubber, the early energy growth of SCC was delayed, while after peak stress, the dissipation of elastic strain energy was hindered, and the rapid growth of total strain energy and dissipated energy were prolonged. The greater the strain rate, the greater the increase rate of total strain energy and dissipated energy, the greater the accumulation rate of elastic strain energy before the peak stress, and the greater the release rate after the peak stress. The established constitutive model can be used to describe the stress-strain relationship of SCC under different strain rate conditions.

关键词

板式轨道 / 自密实混凝土 / 应变率 / 力学性能 / 能量演化 / 本构模型

Key words

Slab track / Self-compacting concrete / Strain rate / Mechanical properties / Energy evolution / Constitutive model

引用本文

导出引用
陈俊豪,曾晓辉,谢友均,龙广成,唐卓. 基于能量转化原理的地铁板式轨道自密实混凝土本构行为[J]. 振动与冲击, 2024, 43(4): 190-198
CHEN Junhao,ZENG Xiaohui,XIE Youjun,LONG Guangcheng,TANG Zhuo. Constitutive response of subway slab track self-compacting concrete based on theenergy conversion principle[J]. Journal of Vibration and Shock, 2024, 43(4): 190-198

参考文献

[1] 马昆林, 龙广成, 谢友均. CRTSⅢ型板式无砟轨道充填层自密实混凝土碳化及力学性能演变的研究[J]. 铁道科学与工程学报, 2012, 9(6): 42-47. MA Kunlin, LONG Guangcheng, XIE Youjun. Carbonation and mechanics evolvement of self-consolidating concrete used in CRTS Ⅲ type slab ballastless track filling layer[J]. Journal of Railway Science and Engineering, 2012, 9(6): 42-47. [2] 江成, 范佳, 王继军. 高速铁路无砟轨道设计关键技术[J]. 中国铁道科学, 2004, 25(2): 43-48. JIANG Cheng, FAN Jia, WANG Jijun. Key techniques of ballastless track design on high-speed railway[J]. China Railway Science, 2004, 25(2): 43-48. [3] 曾晓辉, 傅强, 谢友均, 等. 水泥乳化沥青砂浆力学性能的能量机制[J]. 华南理工大学学报:自然科学版, 2014, 42(6):107-113. ZENG Xiaohui, FU Qiang, XIE Youjun, et al. Energy mechanism of mechanical property of cement-emulsified asphalt mortar[J]. Journal of South China University of Technology: Natural Science Edition, 2014, 42(6): 107-113. [4] 龙广成, 李宁, 薛逸骅, 等. 冲击荷载作用下掺橡胶颗粒自密实混凝土的力学性能[J]. 硅酸盐学报, 2016, 44(8): 1081-1090. LONG Guangcheng, LI Ning, XUE Yihua, et al. Mechanical properties of self-compacting concrete incorporating rubber particles under impact load[J]. Journal of the Chinese Ceramic Society, 2016, 44(8): 1081-1090. [5] 傅强, 谢友均, 宋昊, 等. 水泥乳化沥青砂浆力学性能的分析模型[J]. 硅酸盐学报, 2014, 0(11): 1396-1403. FU Qiang, XIE Youjun, SONG Hao, et al. Model for mechanical properties of cement and asphalt mortar[J]. Journal of the Chinese Ceramic Society, 2014, 0(11): 1396-1403. [6] 徐浩, 王平, 魏贤奎, 等. CRTS Ⅰ型CA砂浆动态受压损伤试验[J]. 建筑材料学报, 2014, 17(5): 837-842. XU Hao, WANG Ping, WEI Xiankui, et al. Dynamic Compression Damage Experiment of CRTS Ⅰ Type CA Mortar[J]. Journal of Building Materials, 2014, 17(5): 837-842. [7] 龙广成, 李宁, 谢友均, 等. 板式轨道充填层自密实混凝土的动态力学特性[J]. 铁道科学与工程学报, 2018, 15(6): 1364-1372. LONG Guangcheng, LI Ning, XIE Youjun, Dynamic mechanical properties of filling layer self-compacting concrete applied in slab track system[J]. Journal of Railway Science and Engineering, 2018, 15(6): 1364-1372. [8] MASHIRI M S, VINOD J S, SHEIKH M N, et al. Shear strength and dilatancy behaviour of sand-type chip mixtures[J]. Soils and Foundations, 2015, 55(3): 517-528. [9] FENG L, LIANG YU M, GUO FANG N, et al. Fatigue performance of rubber-modified recycled aggregate concrete (RRAC) for pavement[J]. Construction and Building Materials, 2015, 95(oct. 1): 207-217. [10] SAKDIRAT K, LI D, YU C, et al. Enhancement of Dynamic Damping in Eco-Friendly Railway Concrete Sleepers Using Waste-Tire Crumb Rubber[J]. Materials, 2018, 11(7): 1169-1188. [11] LIU B, YANG S, LI W, et al. Damping dissipation properties of rubberized concrete and its application in anti-collision of bridge piers[J]. Construction and Building Materials, 2020, 236: 117286. [12] LI N, LONG G, MA C, et al.Properties of self-compacting concrete (SCC) with recycled tire rubber aggregate: A comprehensive study[J].Journal of Cleaner Production, 2019, 236(Nov.1): 117707.1-14. [13] GB175-2007, 通用硅酸盐水泥[S]. 北京: 中华人民共和国质量监督检验检疫总局&中国国家标准化管理委员会, 2007. [14] GB/T 1596-2017, 用于水泥和混凝土中的粉煤灰[S]. 北京: 中华人民共和国质量监督检验检疫总局&中国国家标准化管理委员会, 2017. [15] GB/T 18046-2017, 用于水泥、砂浆和混凝土中的粒化高炉矿渣粉[S]. 北京: 中华人民共和国质量监督检验检疫总局&中国国家标准化管理委员会, 2017. [16] TB/T3275-2018, 铁路混凝土[S]. 北京: 中国国家铁路局, 2018. [17] JGJ/T283-2012, 自密实应用技术规程[S]. 北京: 中华人民共和国住房和城乡建设部, 2012. [18] ASTM C1611/C1611M-14, Standard Test Method for Slump Flow of Self-consolidating Concrete [S]. West Conshohocken: ASTM International, 2014. [19] GB-T 50081-2019, 混凝土物理力学性能试验方法标准[S]. 北京: 中华人民共和国质量监督检验检疫总局&中国国家标准化管理委员会, 2019. [20] 杨志刚, 高建勇, 谭晓明, 等. 全封闭设备舱对隧道内160 km/h地铁气动声源影响[J]. 噪声与振动控制, 2022, 42(1): 61-66. YANG Zhigang, GAO Jianyong, TAN Xiaoming, et al. Influence of fully enclosed equipment cabin on aeroacoustic source of a 160 km/h metro in tunnel[J]. Noise and Vibration Control, 2022, 42(1): 61-66. [21] 梅生启. 混凝土静动态粘弹性能研究[D]. 北京: 北京交通大学, 2019. MEI Shengqi. Investigation of static and dynamic viscoelastic behavior of concrete[D]. Beijing: Beijing Southwest Jiaotong University, 2019. [22] YAN D, LIN G. Influence of initial static stress on the dynamic properties of concrete[J]. Cement and Concrete Composites, 2008, 30(4): 327-333. [23] 王攀峰, 曹玉贵, 邓晓光, 等. 不同应变速率下橡胶混凝土损伤本构模型[J]. 硅酸盐通报, 2022, 41(6): 1912-1919. WANG Panfeng, CAO Yugui, DENG Xiaoguang, et al. Damage constitutive model of rubber concrete under different strain sates[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 1912-1919. [24] 韩辰悦, 庞建勇. 不同应变率下橡胶混凝土抗压性能及能量特性研究[J]. 硅酸盐通报, 2022, 41(3): 922-930. HAN Chenyue, PANG Jianyong. Compressive Properties and Energy Characteristics of Rubber Concrete under Different Strain Rates[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(3): 922-930. [25] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003-3010. XIE Heping, JU Yang, LI Liyun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003-3010. [26] 刘晓辉, 郝齐钧, 胡安奎, 等. 准静态应变率下单轴煤岩特征应力确定方法研究[J]. 岩石力学与工程学报, 2020, 39(10): 2038-2046. LIU Xiaohui, HAO Qijun, HU Ankui, et al. Study on determination of uniaxial characteristic stress of coal rock under quasi-static strain rate[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10): 2038-2046. [27] 傅强, 赵旭, 何嘉琦, 等. 基于能量转化原理的混杂纤维混凝土本构行为[J]. 硅酸盐学报, 2021, 49(8):1670-1682. FU Qiang, ZHAO Xu, HE Jiaqi, et al. Constitutive response of hybrid basalt-polypropylene fiber-reinforced concrete based on energy conversion principle[J]. Journal of The Chinese Ceramic Society, 2021,49(8):1670-1682. [28] LEMAITRE J. Evaluation of dissipation and damage in metals submitted to dynamic loading[J]. Mechanical Behavior of Materials, 1972, 540-549.

PDF(3281 KB)

237

Accesses

0

Citation

Detail

段落导航
相关文章

/